Software Engineering

UNIT II SOFTWARE

REQUIREMENTS

» The process of establishing the services that the customer requires from a system and the
constraints under which it operates and is developed
» Requirements may be functional or non-functional
* Functional requirements describe system services or functions
* Non-functional requirements is a constraint on the system or on the development
process

Types of requirements
» User requirements
+ Statements in natural language (NL) plus diagrams of the services the system
provides and its operational constraints. Written for customers
» System requirements
* A structured document setting out detailed descriptions of the system services.
Written as a contract between client and contractor
» Software specification
* A detailed software description which can serve as a basis for a design or
implementation. Written for developers

Functional and Non-Functional

Functional requirements
» Functionality or services that the system is expected to provide.
» Functional requirements may also explicitly state what the system shouldn‘t do.
* Functional requirements specification should be:
* Complete: All services required by the user should be defined
« Consistent: should not have contradictory definition (also avoid ambiguity—>
don‘t leave room for different interpretations)

Examples of functional requirements
* The LIBSYS system

» A library system that provides a single interface to a number of databases of articles in
different libraries.

» Users can search for, download and print these articles for personal study.

» The user shall be able to search either all of the initial set of databases or select a subset from
it.

» The system shall provide appropriate viewers for the user to read documents in the document
store.

» Every order shall be allocated a unique identifier (ORDER ID) which the user shall be able
to copy to the account‘s permanent storage area.

Non-Functional requirements

Software Engineering

Requirements that are not directly concerned with the specific functions delivered by the
system

Typically relate to the system as a whole rather than the individual system features

Often could be deciding factor on the survival of the system (e.g. reliability, cost, response
time)

Non-Functional requirements classifications:

Non-functional
requir ements

Product Organisation External
requir ements al requir emen requir ements

| Efficiency I Reliability I | Porta bility I | Inter operability I Ethical

| Usa bility I | Delivery I| Implementa tion I| Stan d ar ds I Leg islative
| Performance I | Space I | Privacy I Safety I

il

Domain requirements

Domain requirements are derived from the application domain of the system rather than from
the specific needs of the system users.

May be new functional requirements, constrain existing requirements or set out how
particular computation must take place.

Example: tolerance level of landing gear on an aircraft (different on dirt, asphalt, water), or
what happens to fiber optics line in case of sever weather during winter Olympics (Only
domain-area experts know)

Product requirements

Specify the desired characteristics that a system or subsystem must possess.

Most NFRs are concerned with specifying constraints on the behaviour of the executing
system.

Specifying product requirements

Some product requirements can be formulated precisely, and thus easily quantified
* Performance
» Capacity

Software Engineering

» Others are more difficult to quantify and, consequently, are often stated informally
» Usability

Process requirements
» Process requirements are constraints placed upon the development process of the system
* Process requirements include:
* Requirements on development standards and methods which must be followed
* CASE tools which should be used
* The management reports which must be provided

Examples of process requirements

» The development process to be used must be explicitly defined and must be conformant with
ISO 9000 standards

* The system must be developed using the XYZ suite of CASE tools

» Management reports setting out the effort expended on each identified system component
must be produced every two weeks

» A disaster recovery plan for the system development must be specified

External requirements
* May be placed on both the product and the process
* Derived from the environment in which the system is developed
» External requirements are based on:
» application domain information
» organisational considerations
+ the need for the system to work with other systems
» health and safety or data protection regulations
« or even basic natural laws such as the laws of physics

Examples of external requirements

» Medical data system The organisation‘s data protection officer must certify that all data is
maintained according to data protection legislation before the system is put into operation.

» Train protection system The time required to bring the train to a complete halt is computed
using the following function:

e The deceleration of the train shall be taken as:

Etrain = Zcontrol + ggradient
where:

Soradient = 9.81 ms? * compensated gradient / alpha and where the values of 9.81 ms™
alpha are known for the different types of train.

Zeontrol 18 1nitialised at 0.8 ms? - this value being parameterised in order to remain
adjustable. The illustrates an example of the train‘s deceleration by using the parabolas derived
from the above formula where there is a change in gradient before the (predicted) stopping point
of the train.

/

Software Document
» Should provide for communication among team members

Software Engineering

» Should act as an information repository to be used by maintenance engineers

* Should provide enough information to management to allow them to perform all program
management related activities

* Should describe to users how to operate and administer the system

» Specify external system behaviour

e Specify implementation constraints

» [Easy to change

= Serve as reference tool for maintenance

» Record forethought about the life cycle of the system i.e. predict changes

» Characterise responses to unexpected events

Users of a requirements document

Speci fy the req uirements and

read th em to ch eck t hat t hey meet
Sy stem cus to mers their needs. They
s pecify changes to the

requirements

Use the requirements
documentto planabid fort
he system and to plan the

sy stem dev elopment process

Manag ers

,|| !r

Us e the requirement s to
understand wh at system is to
be developed

Sy stem eng in eers

Us e the requirements to
develop validation tests for
the system

System test
eng in eers

Us e the requirements to hel p
understand the system and

the relationships between its
pats

Sy stem main
ten ance eng
in eers

Process Documentation
» Used to record and track the development process
* Planning documentation
* Cost, Schedule, Funding tracking
* Schedules
» Standards

Software Engineering

» This documentation is created to allow for successful management of a software product
» Has a relatively short lifespan
* Only important to internal development process
* Except in cases where the customer requires a view into this data
» Some items, such as papers that describe design decisions should be extracted and moved
into the product documentation category when they become implemented
* Product Documentation
» Describes the delivered product
* Must evolve with the development of the software product
* Two main categories:
* System Documentation
+ User Documentation

Product Documentation
» System Documentation
* Describes how the system works, but not how to operate it
» Examples:
* Requirements Spec
* Architectural Design
* Detailed Design
* Commented Source Code
= Including output such as JavaDoc
* Test Plans
= Including test cases
* V&V plan and results
* List of Known Bugs
» User Documentation has two main types
* End User
* System Administrator
= In some cases these are the same people
* The target audience must be well understood!
» There are five important areas that should be documented for a formal release of a software

application
* These do not necessarily each have to have their own document, but the topics should
be covered thoroughly

» Functional Description of the Software
» Installation Instructions

* Introductory Manual

» Reference Manual

* System Administrator‘s Guide

Document Quality

* Providing thorough and professional documentation is important for any size product
development team

Software Engineering

* The problem is that many software professionals lack the writing skills to create
professional level documents

Document Structure

» All documents for a given product should have a similar structure
* A good reason for product standards

» The IEEE Standard for User Documentation lists such a structure
+ Itis a superset of what most documents need

» The authors -best practices |l are:

» Put a cover page on all documents

» Divide documents into chapters with sections and subsections

* Add an index if there is lots of reference information

* Add a glossary to define ambiguous terms

Standards
e Standards play an important role in the development, maintenance and usefulness of
documentation

» Standards can act as a basis for quality documentation
* But are not good enough on their own
= Usually define high level content and organization

» There are three types of documentation standards

1.Process Standards
Define the approach that is to be used when creating the documentation
Don‘t actually define any of the content of the documents

[

. Product Standards
Goal is to have all documents created for a specific product attain a consistent structure and
appearance
* Can be based on organizational or contractually required standards
* Four main types:
* Documentation Identification Standards
* Document Structure Standards
* Document Presentation Standards
* Document Update Standards

One caveat:
* Documentation that will be viewed by end users should be created in a way that is
best consumed and is most attractive to them
* Internal development documentation generally does not meet this need

3. Interchange Standards

Deals with the creation of documents in a format that allows others to effectively use
* PDF may be good for end users who don‘t need to edit
* Word may be good for text editing

Software Engineering

» Specialized CASE tools need to be considered

This is usually not a problem within a single organization, but when sharing data between
organizations it can occur

* This same problem is faced all the time during software integration

Other Standards

IEEE
* Has a published standard for user documentation
* Provides a structure and superset of content areas

* Many organizations probably won‘t create documents that completely match the
standard

Writing Style
» Ten -best practices Il when writing are provided

* Author proposes that group edits of important documents should occur in a similar
fashion to software walkthroughs

Requirement Engineering Process

The requirements engineering process includes a feasibility study, requirements elicitation
and analysis, requirements specification and requirements management

g

" Feasibility Requirements

study elicitatiog and
analysis e
— Requir ement s
- specificati on ~
Feasibili ty — ,"/Requ irements
report v validation
System
models

User and system
requirements

Requirements
document

Feasibility Studies
A feasibility study decides whether or not the proposed system is worthwhile
A short focused study that checks
+ If the system contributes to organisational objectives
+ If the system can be engineered using current technology and within budget
» If the system can be integrated with other systems that are used
Based on information assessment (what is required), information collection and report
writing
Questions for people in the organisation
* What if the system wasn‘t implemented?
* What are current process problems?
* How will the proposed system help?

Software Engineering

» What will be the integration problems?
* Is new technology needed? What skills?
» What facilities must be supported by the proposed system?

Elicitation and analysis
» Sometimes called requirements elicitation or requirements discovery
» Involves technical staff working with customers to find out about
 the application domain
+ the services that the system should provide
* the system‘s operational constraints
» May involve end-users, managers, engineers involved in maintenance, domain experts, trade
unions, etc.
* These are called stakeholders

Problems of requirements analysis
» Stakeholders don‘t know what they really want
» Stakeholders express requirements in their own terms
» Different stakeholders may have conflicting requirements
» Organisational and political factors may influence the system requirements
* The requirements change during the analysis process
* New stakeholders may emerge and the business environment change

System models
» Different models may be produced during the requirements analysis activity
» Requirements analysis may involve three structuring activities which result in these different
models
» Partitioning — Identifies the structural (part-of) relationships between entities
* Abstraction — Identifies generalities among entities
* Projection — Identifies different ways of looking at a problem
e System models will be covered on January 30

Scenarios

» Scenarios are descriptions of how a system is used in practice

» They are helpful in requirements elicitation as people can relate to these more readily than
abstract statement of what they require from a system

» Scenarios are particularly useful for adding detail to an outline requirements description

Ethnography
» A social scientists spends a considerable time observing and analysing how people actually
work

» People do not have to explain or articulate their work

» Social and organisational factors of importance may be observed

» Ethnographic studies have shown that work is usually richer and more complex than
suggested by simple system models

Software Engineering

Requirements validation
» Concerned with demonstrating that the requirements define the system that the customer
really wants
* Requirements error costs are high so validation is very important
» Fixing a requirements error after delivery may cost up to 100 times the cost of fixing
an implementation error
* Requirements checking
+ Validity
+ Consistency
+ Completeness
* Realism
* Verifiability

Requirements validation techniques
* Reviews
* Systematic manual analysis of the requirements
* Prototyping
» Using an executable model of the system to check requirements.
» Test-case generation
* Developing tests for requirements to check testability
* Automated consistency analysis
* Checking the consistency of a structured requirements description

Requirements management
» Requirements management is the process of managing changing requirements during the
requirements engineering process and system development
» Requirements are inevitably incomplete and inconsistent
* New requirements emerge during the process as business needs change and a better
understanding of the system is developed
» Different viewpoints have different requirements and these are often contradictory

Software prototyping
Incomplete versions of the software program being developed. Prototyping can also be
used by end users to describe and prove requirements that developers have not considered

Benefits:

The software designer and implementer can obtain feedback from the users early in the
project. The client and the contractor can compare if the software made matches the software
specification, according to which the software program is built.

It also allows the software engineer some insight into the accuracy of initial project
estimates and whether the deadlines and milestones proposed can be successfully met.

Process of prototyping
1. Identify basic requirements

Determine basic requirements including the input and output information desired. Details,
such as security, can typically be ignored.

Software Engineering

2. Develop Initial Prototype

The initial prototype is developed that includes only user interfaces. (See Horizontal
Prototype, below)
3. Review

The customers, including end-users, examine the prototype and provide feedback on
additions or changes.
4. Revise and Enhance the Prototype

Using the feedback both the specifications and the prototype can be improved. Negotiation
about what is within the scope of the contract/product may be necessary. If changes are
introduced then a repeat of steps #3 and #4 may be needed.

Dimensions of prototypes
1. Horizontal Prototype

It provides a broad view of an entire system or subsystem, focusing on user interaction more
than low-level system functionality, such as database access. Horizontal prototypes are useful
for:

- Confirmation of user interface requirements and system scope

- Develop preliminary estimates of development time, cost and effort.

2 Vertical Prototypes
A vertical prototype is a more complete elaboration of a single subsystem or function. It is
useful for obtaining detailed requirements for a given function, with the following benefits:
- Refinement database design
- Obtain information on data volumes and system interface needs, for network sizing and
performance engineering

Types of prototyping

Software prototyping has many variants. However, all the methods are in some way
based on two major types of prototyping: Throwaway Prototyping and Evolutionary Prototyping.
1. Throwaway prototyping

Also called close ended prototyping. Throwaway refers to the creation of a model that
will eventually be discarded rather than becoming part of the final delivered software. After
preliminary requirements gathering is accomplished, a simple working model of the system is
constructed to visually show the users what their requirements may look like when they are
implemented into a finished system.

The most obvious reason for using Throwaway Prototyping is that it can be done quickly.
If the users can get quick feedback on their requirements, they may be able to refine them early
in the development of the software. Making changes early in the development lifecycle is
extremely cost effective since there is nothing at that point to redo. If a project is changed after a
considerable work has been done then small changes could require large efforts to implement
since software systems have many dependencies. Speed is crucial in implementing a throwaway
prototype, since with a limited budget of time and money little can be expended on a prototype
that will be discarded.

Strength of Throwaway Prototyping is its ability to construct interfaces that the users can
test. The user interface is what the user sees as the system, and by seeing it in front of them, it is
much easier to grasp how the system will work.

Software Engineering

2. Evolutionary prototyping

Evolutionary Prototyping (also known as breadboard prototyping) is quite different from
Throwaway Prototyping. The main goal when using Evolutionary Prototyping is to build a very
robust prototype in a structured manner and constantly refine it. "The reason for this is that the
Evolutionary prototype, when built, forms the heart of the new system, and the improvements
and further requirements will be built.

Evolutionary Prototypes have an advantage over Throwaway Prototypes in that they are
functional systems. Although they may not have all the features the users have planned, they
may be used on a temporary basis until the final system is delivered.

In Evolutionary Prototyping, developers can focus themselves to develop parts of the
system that they understand instead of working on developing a whole system. To minimize risk,
the developer does not implement poorly understood features. The partial system is sent to
customer sites. As users work with the system, they detect opportunities for new features and
give requests for these features to developers. Developers then take these enhancement requests
along with their own and use sound configuration-management practices to change the software-
requirements specification, update the design, recode and retest.

3. Incremental prototyping
The final product is built as separate prototypes. At the end the separate prototypes are
merged in an overall design.

4. Extreme prototyping
Extreme Prototyping as a development process is used especially for developing web

applications. Basically, it breaks down web development into three phases, each one based on
the preceding one. The first phase is a static prototype that consists mainly of HTML pages. In
the second phase, the screens are programmed and fully functional using a simulated services
layer. In the third phase the services are implemented. The process is called Extreme Prototyping
to draw attention to the second phase of the process, where a fully-functional Ul is developed
with very little regard to the services other than their contract.

Advantages of prototyping

1. Reduced time and costs: Prototyping can improve the quality of requirements and
specifications provided to developers. Because changes cost exponentially more to implement as
they are detected later in development, the early determination of what the user really wants can
result in faster and less expensive software.

2. Improved and increased user involvement: Prototyping requires user involvement and
allows them to see and interact with a prototype allowing them to provide better and more
complete feedback and specifications. The presence of the prototype being examined by the user
prevents many misunderstandings and miscommunications that occur when each side believe the
other understands what they said. Since users know the problem domain better than anyone on
the development team does, increased interaction can result in final product that has greater
tangible and intangible quality. The final product is more likely to satisfy the users‘ desire for
look, feel and performance.

Software Engineering

Disadvantages of prototyping

1. Insufficient analysis: The focus on a limited prototype can distract developers from properly
analyzing the complete project. This can lead to overlooking better solutions, preparation of
incomplete specifications or the conversion of limited prototypes into poorly engineered final
projects that are hard to maintain. Further, since a prototype is limited in functionality it may not
scale well if the prototype is used as the basis of a final deliverable, which may not be noticed if
developers are too focused on building a prototype as a model.

2. User confusion of prototype and finished system: Users can begin to think that a prototype,
intended to be thrown away, is actually a final system that merely needs to be finished or
polished. (They are, for example, often unaware of the effort needed to add error -checking and
security features which a prototype may not have.) This can lead them to expect the prototype to
accurately model the performance of the final system when this is not the intent of the
developers. Users can also become attached to features that were included in a prototype for
consideration and then removed from the specification for a final system. If users are able to
require all proposed features be included in the final system this can lead to conflict.

3. Developer misunderstanding of user objectives: Developers may assume that users share
their objectives (e.g. to deliver core functionality on time and within budget), without
understanding wider commercial issues. For example, user representatives attending Enterprise
software (e.g. PeopleSoft) events may have seen demonstrations of "transaction auditing" (where
changes are logged and displayed in a difference grid view) without being told that this feature
demands additional coding and often requires more hardware to handle extra database accesses.
Users might believe they can demand auditing on every field, whereas developers might think
this is feature creep because they have made assumptions about the extent of user requirements.
If the developer has committed delivery before the user requirements were reviewed, developers
are between a rock and a hard place, particularly if user management derives some advantage
from their failure to implement requirements.

4. Developer attachment to prototype: Developers can also become attached to prototypes they
have spent a great deal of effort producing; this can lead to problems like attempting to convert a
limited prototype into a final system when it does not have an appropriate underlying
architecture. (This may suggest that throwaway prototyping, rather than evolutionary
prototyping, should be used.)

5. Excessive development time of the prototype: A key property to prototyping is the fact that
it is supposed to be done quickly. If the developers lose sight of this fact, they very well may try
to develop a prototype that is too complex. When the prototype is thrown away the precisely
developed requirements that it provides may not yield a sufficient increase in productivity to
make up for the time spent developing the prototype. Users can become stuck in debates over
details of the prototype, holding up the development team and delaying the final product.

6. Expense of implementing prototyping: the start up costs for building a development team
focused on prototyping may be high. Many companies have development methodologies in
place, and changing them can mean retraining, retooling, or both. Many companies tend to just
jump into the prototyping without bothering to retrain their workers as much as they should.

A common problem with adopting prototyping technology is high expectations for productivity
with insufficient effort behind the learning curve. In addition to training for the use of a
prototyping technique, there is an often overlooked need for developing corporate and project

Software Engineering

specific underlying structure to support the technology. When this underlying structure is
omitted, lower productivity can often result.

Best projects to use prototyping

It has been found that prototyping is very effective in the analysis and design of on-line
systems, especially for transaction processing, where the use of screen dialogs is much more in
evidence. The greater the interaction between the computer and the user, the greater the benefit is
that can be obtained from building a quick system and letting the user play with it.

Systems with little user interaction, such as batch processing or systems that mostly do
calculations, benefit little from prototyping. Sometimes, the coding needed to perform the system
functions may be too intensive and the potential gains that prototyping could provide are too
small.

Prototyping is especially good for designing good human-computer interfaces. "One of
the most productive uses of rapid prototyping to date has been as a tool for iterative user
requirements engineering and human-computer interface design.

Methods

There are few formal prototyping methodologies even though most Agile Methods rely
heavily upon prototyping techniques.
1. Dynamic systems development method

Dynamic Systems Development Method (DSDM) is a framework for delivering business
solutions that relies heavily upon prototyping as a core technique, and is itself ISO 9001
approved. It expands upon most understood definitions of a prototype. According to DSDM the
prototype may be a diagram, a business process, or even a system placed into production. DSDM
prototypes are intended to be incremental, evolving from simple forms into more comprehensive
ones.
DSDM prototypes may be throwaway or evolutionary. Evolutionary prototypes may be evolved
horizontally (breadth then depth) or vertically (each section is built in detail with additional
iterations detailing subsequent sections). Evolutionary prototypes can eventually evolve into
final systems.

The four categories of prototypes as recommended by DSDM are:

- Business prototypes — used to design and demonstrate the business processes being
automated.

- Usability prototypes — used to define, refine, and demonstrate user interface design
usability, accessibility, look and feel.

- Performance and capacity prototypes - used to define, demonstrate, and predict how
systems will perform under peak loads as well as to demonstrate and evaluate other non-
functional aspects of the system (transaction rates, data storage volume, response time)

- Capability/technique prototypes — used to develop, demonstrate, and evaluate a design
approach or concept.

The DSDM lifecycle of a prototype is to:
Identify prototype

Agree to a plan

Create the prototype

Review the prototype

el

Software Engineering

2. Operational prototyping

Operational Prototyping was proposed by Alan Davis as a way to integrate throwaway and
evolutionary prototyping with conventional system development. "[It] offers the best of both the
quick-and-dirty and conventional-development worlds in a sensible manner. Designers develop
only well-understood features in building the evolutionary baseline, while using throwaway
prototyping to experiment with the poorly understood features."

Davis' belief is that to try to "retrofit quality onto a rapid prototype" is not the correct approach
when trying to combine the two approaches. His idea is to engage in an evolutionary prototyping
methodology and rapidly prototype the features of the system after each evolution.

The specific methodology follows these steps:

- An evolutionary prototype is constructed and made into a baseline using conventional
development strategies, specifying and implementing only the requirements that are well
understood.

- Copies of the baseline are sent to multiple customer sites along with a trained prototyper.

- At each site, the prototyper watches the user at the system.

- Whenever the user encounters a problem or thinks of a new feature or requirement, the
prototyper logs it. This frees the user from having to record the problem, and allows them
to continue working.

- After the user session is over, the prototyper constructs a throwaway prototype on top of
the baseline system.

- The user now uses the new system and evaluates. If the new changes aren't effective, the
prototyper removes them.

- If the user likes the changes, the prototyper writes feature-enhancement requests and
forwards them to the development team.

- The development team, with the change requests in hand from all the sites, then produce
a new evolutionary prototype using conventional methods.

Obviously, a key to this method is to have well trained prototypers available to go to the user
sites. The Operational Prototyping methodology has many benefits in systems that are complex
and have few known requirements in advance.

3. Evolutionary systems development

Evolutionary Systems Development is a class of methodologies that attempt to formally
implement Evolutionary Prototyping. One particular type, called Systems craft is described by
John Crinnion in his book: Evolutionary Systems Development.

Systemscraft was designed as a 'prototype' methodology that should be modified and
adapted to fit the specific environment in which it was implemented.

Systemscraft was not designed as a rigid 'cookbook' approach to the development
process. It is now generally recognised[sic] that a good methodology should be flexible enough
to be adjustable to suit all kinds of environment and situation...

The basis of Systemscraft, not unlike Evolutionary Prototyping, is to create a working system
from the initial requirements and build upon it in a series of revisions. Systemscraft places heavy
emphasis on traditional analysis being used throughout the development of the system.

4. Evolutionary rapid development

Software Engineering

Evolutionary Rapid Development (ERD) was developed by the Software Productivity
Consortium, a technology development and integration agent for the Information Technology
Office of the Defense Advanced Research Projects Agency (DARPA).

Fundamental to ERD is the concept of composing software systems based on the reuse of
components, the use of software templates and on an architectural template. Continuous
evolution of system capabilities in rapid response to changing user needs and technology is
highlighted by the evolvable architecture, representing a class of solutions. The process focuses
on the use of small artisan-based teams integrating software and systems engineering disciplines
working multiple, often parallel short-duration timeboxes with frequent customer interaction.

Key to the success of the ERD-based projects is parallel exploratory analysis and development of
features, infrastructures, and components with and adoption of leading edge technologies
enabling the quick reaction to changes in technologies, the marketplace, or customer
requirements.

To elicit customer/user input, frequent scheduled and ad hoc/impromptu meetings with the
stakeholders are held. Demonstrations of system capabilities are held to solicit feedback before
design/implementation decisions are solidified. Frequent releases (e.g., betas) are made availa ble
for use to provide insight into how the system could better support user and customer needs. This
assures that the system evolves to satisfy existing user needs.

The design framework for the system is based on using existing published or de facto
standards. The system is organized to allow for evolving a set of capabilities that includes
considerations for performance, capacities, and functionality. The architecture is defined in terms
of abstract interfaces that encapsulate the services and their implementation (e.g., COTS
applications). The architecture serves as a template to be used for guiding development of more
than a single instance of the system. It allows for multiple application components to be used to
implement the services. A core set of functionality not likely to change is also identified and
established.

The ERD process is structured to use demonstrated functionality rather than paper
products as a way for stakeholders to communicate their needs and expectations. Central to this
goal of rapid delivery is the use of the "time box" method. Timeboxes are fixed periods of time
in which specific tasks (e.g., developing a set of functionality) must be performed. Rather than
allowing time to expand to satisfy some vague set of goals, the time is fixed (both in terms of
calendar weeks and person-hours) and a set of goals is defined that realistically can be achieved
within these constraints. To keep development from degenerating into a "random walk," long-
range plans are defined to guide the iterations. These plans provide a vision for the overall
system and set boundaries (e.g., constraints) for the project. Each iteration within the process is
conducted in the context of these long-range plans.

Once architecture is established, software is integrated and tested on a daily basis. This
allows the team to assess progress objectively and identify potential problems quickly. Since
small amounts of the system are integrated at one time, diagnosing and removing the defect is
rapid. User demonstrations can be held at short notice since the system is generally ready to
exercise at all times.

5. Scrum

Scrum is an agile method for project management. The approach was first described by
Takeuchi and Nonaka in "The New New Product Development Game" (Harvard Business
Review, Jan-Feb 1986).

Software Engineering

Tools

Efficiently using prototyping requires that an organization have proper tools and a staff
trained to use those tools. Tools used in prototyping can vary from individual tools like 4th
generation programming languages used for rapid prototyping to complex integrated CASE
tools. 4th generation programming languages like Visual Basic and ColdFusion are frequently
used since they are cheap, well known and relatively easy and fast to use. CASE tools are often
developed or selected by the military or large organizations. Users may prototype elements of an
application themselves in a spreadsheet.

1. Screen generators, design tools & Software Factories

Commonly used screen generating programs that enable prototypers to show users
systems that don't function, but show what the screens may look like. Developing Human
Computer Interfaces can sometimes be the critical part of the development effort, since to the
users the interface essentially is the system.

Software Factories are Code Generators that allow you to model the domain model and
then drag and drop the Ul Also they enable you to run the prototype and use basic database
functionality. This approach allows you to explore the domain model and make sure it is in sync
with the GUI prototype.

2. Application definition or simulation software

It enables users to rapidly build lightweight, animated simulations of another computer
program, without writing code. Application simulation software allows both technical and non-
technical users to experience, test, collaborate and validate the simulated program, and provides
reports such as annotations, screenshot and schematics. To simulate applications one can also use
software which simulate real-world software programs for computer based training,
demonstration, and customer support, such as screen casting software as those areas are closely
related.

3. Sketchflow

Sketch Flow, a feature of Microsoft Expression Studio Ultimate, gives the ability to quickly
and effectively map out and iterate the flow of an application Ul, the layout of individual screens
and transition from one application state to another.

- Interactive Visual Tool

- Easyto learn

- Dynamic

- Provides enviroment to collect feedback

4. Visual Basic

One of the most popular tools for Rapid Prototyping is Visual Basic (VB). Microsoft Access,
which includes a Visual Basic extensibility module, is also a widely accepted prototyping tool
that is used by many non-technical business analysts. Although VB is a programming language it
has many features that facilitate using it to create prototypes, including:

- An interactive/visual user interface design tool.

- Easy connection of user interface components to underlying functional behavior.

- Modifications to the resulting software are easy to perform.

Software Engineering

5. Requirements Engineering Environment

It provides an integrated toolset for rapidly representing, building, and executing models
of critical aspects of complex systems.

It is currently used by the Air Force to develop systems. It is: an integrated set of tools
that allows systems analysts to rapidly build functional, user interface, and performance
prototype models of system components. These modeling activities are performed to gain a
greater understanding of complex systems and lessen the impact that inaccurate requirement
specifications have on cost and scheduling during the system development process.

REE is composed of three parts. The first, called proto is a CASE tool specifically
designed to support rapid prototyping. The second part is called the Rapid Interface Prototyping
System or RIP, which is a collection of tools that facilitate the creation of user interfaces. The
third part of REE is a user interface to RIP and proto that is graphical and intended to be easy to
use.

Rome Laboratory, the developer of REE, intended that to support their internal requirements
gathering methodology. Their method has three main parts:
- Elicitation from various sources which means u loose (users, interfaces to other systems),
specification, and consistency checking
- Analysis that the needs of diverse users taken together do not conflict and are technically
and economically feasible
- Validation that requirements so derived are an accurate reflection of user needs.

6. LYMB
LYMB is an object-oriented development environment aimed at developing applications
that require combining graphics-based user interfaces, visualization, and rapid prototyping.

7. Non-relational environments

Non-relational definition of data (e.g. using Cache or associative models can help make
end-user prototyping more productive by delaying or avoiding the need to normalize data at
every iteration of a simulation. This may yield earlier/greater clarity of business requirements,
though it does not specifically confirm that requirements are technically and economically
feasible in the target production system.

8. PSDL
PSDL is a prototype description language to describe real-time software.

Prototyping in the Software Process

System prototyping

» Prototyping is the rapid development of a system

* In the past, the developed system was normally thought of as inferior in some way to the
required system so further development was required

* Now, the boundary between prototyping and normal system development is blurred and
many systems are developed using an evolutionary approach

Software Engineering

Uses of system prototypes
» The principal use is to help customers and developers understand the requirements for the

system
* Requirements elicitation. Users can experiment with a prototype to see how the

system supports their work
* Requirements validation. The prototype can reveal errors and omissions in the
requirements
» Prototyping can be considered as a risk reduction activity which reduces requirements risks

Prototyping benefits
* Misunderstandings between software users and developers are exposed

» Missing services may be detected and confusing services may be identified
» A working system is available early in the process

» The prototype may serve as a basis for deriving a system specification

» The system can support user training and system testing

Prototyping process

Define
prototype

functionality 4
R —

Establish
prototype
objectives

Evaluate
prototype

Develop
prototype

,,
.||||||I::......
"
"Illllllifllllll
"
[

Prototyping Outline Executable Evaluation
plan definition prototype report
= —_— 1 —

Prototyping in the software process

* Evolutionary prototyping
* An approach to system development where an initial prototype is produced and

refined through a number of stages to the final system
* Throw-away prototyping
* A prototype which is usually a practical implementation of the system is produced to
help discover requirements problems and then discarded. The system is then
developed using some other development process

Data Model
» Used to describe the logical structure of data processed by the system
» Entity-relation-attribute model sets out the entities in the system, the relationships between
these entities and the entity attributes
* Widely used in database design. Can readily be implemented using relational databases
No specific notation provided in the UML but objects and associations can be used

Software Engineering

Design
1 | name 1
description
C-date
M-date
has-nodes 15-a *1 has-links
1 n
Y I Y
Node 1 has-links n Link
name - name
type tvpe
I‘ 2 links
1 1
has-labels has-labels
Label
name
n T n
Behavioural Model

Behavioural models are used to describe the overall behaviour of a system
Two types of behavioural model are shown here
* Data processing models that show how data is processed as it moves through the system
» State machine models that show the systems response to events

Both of these models are required for a description of the system‘s behaviour

. Data-processing models

» Data flow diagrams are used to model the system‘s data processing
» These show the processing steps as data flows through a system

» Intrinsic part of many analysis methods
» Simple and intuitive notation that customers can understand
» Show end-to-end processing of data

Data flow diagrams
DFDs model the system from a functional perspective
Tracking and documenting how the data associated with a process is helpful to develop an
overall understanding of the system

Data flow diagrams may also be used in showing the data exchange between a system and
other systems in its environment

Software Engineering

Order processing DFD
i ; : Checked and
Completed Signed Signed Send to sigmid order
order form order form order form % aiden
il supplier t Er _
details + Validate s
blank order
order form Adjust
available
details budget
Order
amount
+ account

details

Orders Budget
file file
2. State machine models

» These model the behaviour of the system in response to external and internal events

* They show the system‘s responses to stimuli so are often used for modelling real-time
systems

» State machine models show system states as nodes and events as arcs between these nodes.

* When an event occurs, the system moves from one state to another

» Statecharts are an integral part of the UML

Microwave oven model
Tull

power / Full po wer ™\

———=|do: setpower |

=600 /
T
Timer
| i Number N
do: diplay | S Sertme ™\
uﬂ e J Hill Settime ; p
o . power :

do: get number
exit: set time

it power RN
- / o sm/
L/ = N /LN

/ Half poa \ Enabled open Waiting
=|do: sctpower I Door do: display |
\ =300 ;; closed 'Ready' 7
| |
Disabled

do: display I-i
'W’altmg

do: display
time /

F

Software Engineering

Statecharts

* Allow the decomposition of a model into submodels

» A brief description of the actions is included following the _do‘ in each state
» Can be complemented by tables describing the states and the stimuli

Structured Analysis
» The data-flow approach is typified by the Structured Analysis method (SA)
» Two major strategies dominate structured analysis
* _OIld‘ method popularised by DeMarco
* _Modern® approach by Yourdon

DeMarco
* A top-down approach

* The analyst maps the current physical system onto the current logical data-flow
model
* The approach can be summarised in four steps:
* Analysis of current physical system
* Derivation of logical model
* Derivation of proposed logical model
* Implementation of new physical system

Modern structured analysis
» Distinguishes between user‘s real needs and those requirements that represent the external
behaviour satisfying those needs
» Includes real-time extensions
» Other structured analysis approaches include:
» Structured Analysis and Design Technique (SADT)
» Structured Systems Analysis and Design Methodology (SSADM)

Method weaknesses
* They do not model non-functional system requirements.

» They do not usually include information about whether a method is appropriate for a given
problem.

* The may produce too much documentation.
* The system models are sometimes too detailed and difficult for users to understand.

CASE workbenches

* A coherent set of tools that is designed to support related software process activities such as
analysis, design or testing.

* Analysis and design workbenches support system modelling during both requirements
engineering and system design.

» These workbenches may support a specific design method or may provide support for a
creating several different types of system model.

Software Engineering

An analysis and design workbench

Structur ed
diag am m ing

Repor t
gener ation

tools facilities

infor mation
repository

Centr al Query
langua ge

facilities

=1
—)
-

» Diagram editors

* Model analysis and checking tools

Design, anal ysis
and checking

tools

» Repository and associated query language

» Data dictionary

» Report definition and generation tools

» Forms definition tools
= Import/export translators
» Code generation tools

Data Dictionary
» Data dictionaries are lists of all of the names used in the system models. Descriptions of the
entities, relationships and attributes are also included

* Advantages

* Support name management and avoid duplication
» Store of organisational knowledge linking analysis, design and implementation
 Many CASE workbenches support data dictionaries

Data dictionary entries

Software Engineering

Name Description Tvpe Date
1:N relation between enfities of type
has-labels | Node or Link and entities of type Relation | 5.10.1998
Label
Holds structured or unstructured
Label mformation about nodes or links. Entity 8.12.1998

Labels are represented by an icon
(which can be a transparent box) and
associated text.

A 1:1 relation between design

Lmk entities represented as nodes. Links Relation |8.12.1998

are typed and may be named.

Each label has a name which
name identifies the type of label. The name | Attribute | 8.12.1998
(label) must be unique within the set of label

types used 1n a design.

Each node has a name which must be
name umique within a design. The name Aftribute | 15.11.1993
(node) may be up to 64 characters long.

UNIT III

ANALYSIS, DESIGN CONCEPTS AND PRINCIPLES

Design Concepts and Principles:

e Map the information from the analysis model to the design representations - data design,
architectural design, interface design, procedural design

Analysis to Design:

Process Specification (PSPEC)

Data Object Description

procedural

. - interface

. design
~ . architectural

§ State-Transition ~ design

data

design

Control Specification (CSPEC
—————

THE ANALY SIS MODEL THE DESIGN MODEL

Design Models — 1:

