Software Engineering

Name Description Tvpe Date
1:N relation between enfities of type
has-labels | Node or Link and entities of type Relation | 5.10.1998
Label
Holds structured or unstructured
Label mformation about nodes or links. Entity 8.12.1998

Labels are represented by an icon
(which can be a transparent box) and
associated text.

A 1:1 relation between design

Lmk entities represented as nodes. Links Relation |8.12.1998

are typed and may be named.

Each label has a name which
name identifies the type of label. The name | Attribute | 8.12.1998
(label) must be unique within the set of label

types used 1n a design.

Each node has a name which must be
name umique within a design. The name Aftribute | 15.11.1993
(node) may be up to 64 characters long.

UNIT III

ANALYSIS, DESIGN CONCEPTS AND PRINCIPLES

Design Concepts and Principles:

e Map the information from the analysis model to the design representations - data design,
architectural design, interface design, procedural design

Analysis to Design:

Process Specification (PSPEC)

Data Object Description

procedural

. - interface

. design
~ . architectural

§ State-Transition ~ design

data

design

Control Specification (CSPEC
—————

THE ANALY SIS MODEL THE DESIGN MODEL

Design Models — 1:

Software Engineering

* Data Design
created by transforming the data dictionary and ERD into implementation data
structures
— requires as much attention as algorithm design
* Architectural Design
— derived from the analysis model and the subsystem interactions defined in the
DFD
* Interface Design
— derived from DFD and CFD
— describes software elements communication with
+ other software elements
» other systems
* human users
Design Models — 2 :
* Procedure-level design
— created by transforming the structural elements defined by the software
architecture into procedural descriptions of software components
— Derived from information in the PSPEC, CSPEC, and STD
Design Principles — 1:
* Process should not suffer from tunnel vision — consider alternative approaches
* Design should be traceable to analysis model
* Do not try to reinvent the wheel
- use design patterns ie reusable components
* Design should exhibit both uniformity and integration
* Should be structured to accommodate changes
Design Principles — 2 :
* Design is not coding and coding is not design
* Should be structured to degrade gently, when bad data, events, or operating conditions
are encountered
» Needs to be assessed for quality as it is being created
* Needs to be reviewed to minimize conceptual (semantic) errors
Design Concepts -1 :
* Abstraction
— allows designers to focus on solving a problem without being concerned about
irrelevant lower level details
Procedural abstraction is a named sequence of instructions that has a specific and limited
function
e.g open a door
Open implies a long sequence of procedural steps
data abstraction is collection of data that describes a data object
e.g door type, opening mech, weight,dimen
Design Concepts -2 :
* Design Patterns
description of a design structure that solves a particular design problem within a
specific context and its impact when applied
Design Concepts -3 :

Software Engineering

* Software Architecture
— overall structure of the software components and the ways in which that structure
— provides conceptual integrity for a system
Design Concepts -4 :
* Information Hiding
— information (data and procedure) contained within a module is inaccessible to
modules that have no need for such information
* Functional Independence
— achieved by developing modules with single-minded purpose and an aversion to
excessive interaction with other models
Refactoring — Design concepts :
* Fowler [FOW99] defines refactoring in the following manner:
"Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code [design] yet improves its internal
structure. 11
* When software is refectories, the existing design is examined for
— redundancy
— unused design elements
— inefficient or unnecessary algorithms
— poorly constructed or inappropriate data structures
— or any other design failure that can be corrected to yield a better design.
Design Concepts — 4 :
* Objects
— encapsulate both data and data manipulation procedures needed to describe the
content and behavior of a real world entity
* Class
— generalized description (template or pattern) that describes a collection of similar
objects
* Inheritance
— provides a means for allowing subclasses to reuse existing superclass data and
procedures; also provides mechanism for propagating changes
Design Concepts — 5:
* Messages
— the means by which objects exchange information with one another
* Polymorphism
— a mechanism that allows several objects in an class hierarchy to have different
methods with the same name
— 1nstances of each subclass will be free to respond to messages by calling their own
version of the method

Modular Design Methodology Evaluation — 1:
Modularity
— the degree to which software can be understood by examining its components
independently of one another
* Modular decomposability
— provides systematic means for breaking problem into sub problems

Software Engineering

* Modular compos ability
— supports reuse of existing modules in new systems
* Modular understandability
— module can be understood as a stand-alone unit
Modular Design Methodology Evaluation — 2:
* Modular continuity
— module change side-effects minimized
* Modular protection
— processing error side-effects minimized
Effective Modular Design:
* Functional independence
— modules have high cohesion and low coupling
* Cohesion
— qualitative indication of the degree to which a module focuses on just one thing
* Coupling
— qualitative indication of the degree to which a module is connected to other
modules and to the outside world
Architectural Design:
Why Architecture?
The architecture is not the operational software. Rather, it is a representation that enables a
software engineer to:
(1) analyze the effectiveness of the design in meeting its stated requirements,
(2) consider architectural alternatives at a stage when making design changes is still relatively
easy, and
(3) reduce the risks associated with the construction of the software.
Importance :
* Software architecture representations enable communications among stakeholders
* Architecture highlights early design decisions that will have a profound impact on the
ultimate success of the system as an operational entity
» The architecture constitutes an intellectually graspable model of how the system is
structured and how its components work together
Architectural Styles — 1:
+ Data centered
— file or database lies at the center of this architecture and is accessed frequently by
other components that modify data
Architectural Styles — 2:
* Data flow
— input data is transformed by a series of computational components into output
data
— Pipe and filter pattern has a set of components called filters, connected by pipes
that transmit data from one component to the next.
— If the data flow degenerates into a single line of transforms, it is termed batch
sequential
* Object-oriented
— components of system encapsulate data and operations, communication between
components is by message passing

Software Engineering

* Layered
— several layers are defined
— each layer performs operations that become closer to the machine instruction set
in the lower layers
Architectural Styles — 3:
Call and return
— program structure decomposes function into control hierarchy with main program
invoking several subprograms
Software Architecture Design — 1:
* Software to be developed must be put into context
— model external entities and define interfaces
* Identify architectural archetypes
— collection of abstractions that must be modeled if the system is to be constructed
Object oriented Architecture :

* The components of a system encapsulate data and the operations that must be applied to
manipulate the data. Communication and coordination between components is
accomplished via message passing

Software Architecture Design — 2:
» Specify structure of the system
— define and refine the software components needed to implement each archetype
» Continue the process iteratively until a complete architectural structure has been derived

Layered Architecture:
* Number of different layers are defined, each accomplishing operations that progressively
become closer to the machine instruction set
+ At the outer layer —components service user interface operations.
+ At the inner layer — components perform operating system interfacing.
* Intermediate layers provide utility services and application software function
Architecture Tradeoff Analysis — 1:
1. Collect scenarios
2. Elicit requirements, constraints, and environmental description
3. Describe architectural styles/patterns chosen to address scenarios and requirements
* module view
* process view
+ data flow view
Architecture Tradeoff Analysis — 2:
4. Evaluate quality attributes independently (e.g. reliability, performance, security,
maintainability, flexibility, testability, portability, reusability, interoperability)
5. Identify sensitivity points for architecture
* any attributes significantly affected by changing in the architecture
Refining Architectural Design:
* Processing narrative developed for each module
* Interface description provided for each module
* Local and global data structures are defined
* Design restrictions/limitations noted
* Design reviews conducted

Software Engineering

» Refinement considered if required and justified
Architectural Design
* An early stage of the system design process.
* Represents the link between specification and design processes.
= Often carried out in parallel with some specification activities.
» It involves identifying major system components and their communications.
Advantages of explicit architecture
» Stakeholder communication
- Architecture may be used as a focus of discussion by system stakeholders.
» System analysis
- Means that analysis of whether the system can meet its non-functional requirements is
possible.
» Large-scale reuse
- The architecture may be reusable across a range of systems.

Architecture and system characteristics
» Performance
- Localise critical operations and minimise communications. Use large rather than fine-
grain components.
» Security
- Use a layered architecture with critical assets in the inner layers.
» Safety
- Localise safety-critical features in a small number of sub-systems.
» Availability
- Include redundant components and mechanisms for fault tolerance.
* Maintainability
- Use fine-grain, replaceable components.
Architectural conflicts
» Using large-grain components improves performance but reduces maintainability.
* Introducing redundant data improves availability but makes security more difficult.
» Localising safety-related features usually means more communication so degraded
performance.
System structuring
» Concerned with decomposing the system into interacting sub-systems.
» The architectural design is normally expressed as a block diagram presenting an overview of
the system structure.
* More specific models showing how sub-systems share data, are distributed and interface with
each other may also be developed.

Packing robot control system

Software Engineering

Vision

sy stem l
Am Gripper
contr oller contr oller

A

Object
identifica tion
sy stem

Packaging
selection

sy stem

Conveyor
contr oller

Box and line diagrams

* Very abstract - they do not show the nature of component relationships nor the externally
visible properties of the sub-systems.

» However, useful for communication with stakeholders and for project planning.

Architectural design decisions

» Architectural design is a creative process so the process differs depending on the type of
system being developed.

» However, a number of common decisions span all design processes.

» Is there a generic application architecture that can be used?

» How will the system be distributed?

* What architectural styles are appropriate?

» What approach will be used to structure the system?

* How will the system be decomposed into modules?

» What control strategy should be used?

» How will the architectural design be evaluated?

» How should the architecture be documented?

Architecture reuse

» Systems in the same domain often have similar architectures that reflect domain concepts.

» Application product lines are built around a core architecture with variants that satisfy
particular customer requirements.

Architectural styles

» The architectural model of a system may conform to a generic architectural model or style.

* An awareness of these styles can simplify the problem of defining system architectures.

» However, most large systems are heterogeneous and do not follow a single architectural
style.

Architectural models

» Used to document an architectural design.

Software Engineering

= Static structural model that shows the major system components.
* Dynamic process model that shows the process structure of the system.
» Interface model that defines sub-system interfaces.
» Relationships model such as a data-flow model that shows sub-system relationships.
» Distribution model that shows how sub-systems are distributed across computers.
System organisation
» Reflects the basic strategy that is used to structure a system.
» Three organisational styles are widely used:
* A shared data repository style;
* A shared services and servers style;
* An abstract machine or layered style.
The repository model
» Sub-systems must exchange data. This may be done in two ways:
» Shared data is held in a central database or repository and may be accessed by all sub-
systems;
* Each sub-system maintains its own database and passes data explicitly to other sub-
systems.
* When large amounts of data are to be shared, the repository model of sharing is most
commonly used.

CASE toolset architecture

Design Code
editor gener ator

Design Pmoject
transla tor repository

Design Repor t

analyser gener ator

Repository model characteristics
Advantages
» Efficient way to share large amounts of data;
» Sub-systems need not be concerned with how data is produced Centralised management
e.g. backup, security, etc.
» Sharing model is published as the repository schema.
Disadvantages

Program
editor

Software Engineering

» Sub-systems must agree on a repository data model. Inevitably a compromise;
» Data evolution is difficult and expensive;
= No scope for specific management policies;
» Difficult to distribute efficiently.
Client-server model
» Distributed system model which shows how data and processing is distributed across a range
of components.
» Set of stand-alone servers which provide specific services such as printing, data management,
etc.
= Set of clients which call on these services.
» Network which allows clients to access servers.
Client-server characteristics
Advantages
 Distribution of data is straightforward;
* Makes effective use of networked systems. May require cheaper hardware;
+ Easy to add new servers or upgrade existing servers.
Disadvantages
* No shared data model so sub-systems use different data organisation. Data
interchange may be inefficient;
* Redundant management in each server;
* No central register of names and services - it may be hard to find out what servers
and services are available.
Abstract machine (layered) model
» Used to model the interfacing of sub-systems.
» Organises the system into a set of layers (or abstract machines) each of which provide a set
of services.
» Supports the incremental development of sub-systems in different layers. When a layer
interface changes, only the adjacent layer is affected.
» However, often artificial to structure systems in this way.
Modular decomposition styles
» Styles of decomposing sub-systems into modules.
» No rigid distinction between system organisation and modular decomposition.
Sub-systems and modules
* A sub-system is a system in its own right whose operation is independent of the services
provided by other sub-systems.
* A module is a system component that provides services to other components but would not
normally be considered as a separate system.
* Modular decomposition
* Another structural level where sub-systems are decomposed into modules.
» Two modular decomposition models covered
* An object model where the system is decomposed into interacting object;
* A pipeline or data-flow model where the system is decomposed into functional
modules which transform inputs to outputs.
» If possible, decisions about concurrency should be delayed until modules are implemented.
Object models

Software Engineering

» Structure the system into a set of loosely coupled objects with well-defined interfaces.

» Object-oriented decomposition is concerned with identifying object classes, their attributes
and operations.

» When implemented, objects are created from these classes and some control model used to
coordinate object operations.

Invoice processing system

Customer Receipt
custom er# invoice#
name = 1| = 2| date

H
adch:ess . i Ivoice . am ount .
credit period i I custom er#
i invoice# .
i date £
: amount i
I customer :

Payment I -] issue O :
ivoiced sendReminder ()]
date - - - acc;gtPayment 0 I 1
am ount sendReceipt ()
custom er#

Object model advantages

» Objects are loosely coupled so their implementation can be modified without affecting other
objects.

» The objects may reflect real-world entities.

* OO implementation languages are widely used.

» However, object interface changes may cause problems and complex entities may be hard to
represent as objects.

Function-oriented pipelining

» Functional transformations process their inputs to produce outputs.

» May be referred to as a pipe and filter model (as in UNIX shell).

» Variants of this approach are very common. When transformations are sequential, this is a
batch sequential model which is extensively used in data processing systems.

» Not really suitable for interactive systems.

User interface design

» Designing effective interfaces for software systems

» System users often judge a system by its interface rather than its functionality

» A poorly designed interface can cause a user to make catastrophic errors

» Poor user interface design is the reason why so many software systems are never used

* Most users of business systems interact with these systems through graphical user interfaces
(GUIs)

» In some cases, legacy text-based interfaces are still used

User interface design process

Software Engineering

Analyse and
understand user
activities

Produce paper-
based design
prototype

Evaluate design
wi th end-users

Produce
dynamic design
prototype

W- /Implement
prototype =| final user
—_— int erface

prototype

UI design principles
» User familiarity
* The interface should be based on user-oriented terms and concepts rather than
computer concepts
* E.g., an office system should use concepts such as letters, documents, folders etc.
rather than directories, file identifiers, etc.
» Consistency
* The system should display an appropriate level of consistency
* Commands and menus should have the same format, command punctuation should be
similar, etc.
* Minimal surprise
+ If a command operates in a known way, the user should be able to predict the
operation of comparable commands
* Recoverability
* The system should provide some interface to user errors and allow the user to recover
from errors
» User guidance
* Some user guidance such as help systems, on-line manuals, etc. should be supplied
» User diversity
+ Interaction facilities for different types of user should be supported
* E.g., some users have seeing difficulties and so larger text should be available
User-system interaction
* Two problems must be addressed in interactive systems design
* How should information from the user be provided to the computer system?
* How should information from the computer system be presented to the user?

Interaction styles
» Direct manipulation
* Easiest to grasp with immediate feedback
+ Difficult to program
* Menu selection
* User effort and errors minimized
* Large numbers and combinations of choices a problem

Software Engineering

* Form fill-in
* Ease of use, simple data entry
» Tedious, takes a lot of screen space
* Natural language
* Great for casual users
» Tedious for expert users
Information presentation
» Information presentation is concerned with presenting system information to system users
» The information may be presented directly or may be transformed in some way for
presentation
» The Model-View-Controller approach is a way of supporting multiple presentations of data
Information display

0 10 20
 — —
Dial with needle Pie chart Thermometer Horizontal bar
Displaying relative values
Press ure Temper atu re
0 100 200 300 400 O 25 50 75 100

Textual highlighting
— ~

The filena me y o u have cho sen h as been
us ed. P lea se cho os e an other na me

0 -

Ch. 16 User interface design

- /
Data visualisation
» Concerned with techniques for displaying large amounts of information

Software Engineering

» Visualisation can reveal relationships between entities and trends in the data
» Possible data visualisations are:
* Weather information
+ State of a telephone network
* Chemical plant pressures and temperatures
* A model of a molecule
Colour displays
* Colour adds an extra dimension to an interface and can help the user understand complex
information structures
» Can be used to highlight exceptional events
* The use of colour to communicate meaning
Error messages
» Error message design is critically important. Poor error messages can mean that a user
rejects rather than accepts a system
» Messages should be polite, concise, consistent and constructive
» The background and experience of users should be the determining factor in message
design
User interface evaluation
» Some evaluation of a user interface design should be carried out to assess its suitability
» Full scale evaluation is very expensive and impractical for most systems
» Ideally, an interface should be evaluated against req
» However, it is rare for such specifications to be produced

Real Time Software Design
» Systems which monitor and control their environment
» Inevitably associated with hardware devices
» Sensors: Collect data from the system environment
* Actuators: Change (in some way) the system's environment
» Time is critical. Real-time systems MUST respond within specified times
» A real-time system is a software system where the correct functioning of the system depends
on the results produced by the system and the time at which these results are produced
* A _soft‘ real-time system is a system whose operation is degraded if results are not produced
according to the specified timing requirements
* A _hard‘ real-time system is a system whose operation is incorrect if results are not produced
according to the timing specification
Stimulus/Response Systems
» Given a stimulus, the system must produce a response within a specified time
» 2classes
» Periodic stimuli. Stimuli which occur at predictable time intervals
* For example, a temperature sensor may be polled 10 times per second
» Aperiodic stimuli. Stimuli which occur at unpredictable times
* For example, a system power failure may trigger an interrupt which must be
processed by the system
Architectural considerations

Software Engineering

» Because of the need to respond to timing demands made by different stimuli / responses, the
system architecture must allow for fast switching between stimulus handlers
» Timing demands of different stimuli are different so a simple sequential loop is not usually
adequate
Real —-Time Software Design:
* Designing embedded software systems whose behaviour is subject to timing constraints
* To explain the concept of a real-time system and why these systems are usually
implemented as concurrent processes
* To describe a design process for real-time systems
* To explain the role of a real-time executive
* To introduce generic architectures for monitoring and control and data acquisition
systems

Real-time systems:
* Systems which monitor and control their environment
+ Inevitably associated with hardware devices
— Sensors: Collect data from the system environment
— Actuators: Change (in some way) the system's
environment
* Time is critical. Real-time systems MUST respond within specified times
Definition:

* A real-time system is a software system where the correct functioning of the system
depends on the results produced by the system and the time at which these results are
produced

» A _soft‘ real-time system is a system whose operation is degraded if results are not
produced according to the specified timing requirements

* A _hard‘ real-time system is a system whose operation is incorrect if results are not
produced according to the timing specification

Stimulus/Response Systems:
* Given a stimulus, the system must produce a esponse within a specified time
* Periodic stimuli. Stimuli which occur at predictable time intervals
— For example, a temperature sensor may be polled 10 times per second
* Aperiodic stimuli. Stimuli which occur at unpredictable times
— For example, a system power failure may trigger an interrupt which must be
processed by the system
Architectural considerations:

* Because of the need to respond to timing demands made by different stimuli/responses,
the system architecture must allow for fast switching between stimulus handlers

* Timing demands of different stimuli are different so a simple sequential loop is not
usually adequate

* Real-time systems are usually designed as cooperating processes with a real-time
executive controlling these processes

A real-time system model:

Software Engineering

d

/ 7 ’ ™ 7 p h 7 Y
{ Actuator { Actuator . { ctuator . { Actuator .

(A
System elements:
* Sensors control processes
— Collect information from sensors. May buffer information collected in response to
a sensor stimulus
* Data processor
— Carries out processing of collected information and computes the system response
+ Actuator control
— Generates control signals for the actuator
R-T systems design process:
 Identify the stimuli to be processed and the required responses to these stimuli
* For each stimulus and response, identify the timing constraints
+ Aggregate the stimulus and response processing into concurrent processes. A process
may be associated with each class of stimulus and response
» Design algorithms to process each class of stimulus and response. These must meet the
given timing requirements
* Design a scheduling system which will ensure that processes are started in time to meet
their deadlines
+ Integrate using a real-time executive or operating system

Timing constraints:
* May require extensive simulation and experiment to ensure that these are met by the
system
* May mean that certain design strategies such as object-oriented design cannot be used
because of the additional overhead involved
* May mean that low-level programming language features have to be used for
performance reasons
Real-time programming:
* Hard-real time systems may have to programmed in assembly language to ensure that
deadlines are met
» Languages such as C allow efficient programs to be written but do not have constructs to
support concurrency or shared resource management
* Ada as a language designed to support real-time systems design so includes a general
purpose concurrency mechanism
Non-stop system components:

Software Engineering

* Configuration manager
— Responsible for the dynamic reconfiguration of the system
software and hardware. Hardware modules may be replaced and software
upgraded without stopping the systems
* Fault manager
— Responsible for detecting software and hardware faults and
taking appropriate actions (e.g. switching to backup disks) to ensure that the
system continues in operation
Burglar alarm system e.g
* A system is required to monitor sensors on doors and windows to detect the presence of
intruders in a building
* When a sensor indicates a break-in, the system switches on lights around the area and
calls police automatically
* The system should include provision for operation without a mains power supply
+ Sensors
* Movement detectors, window sensors, door sensors.
* 50 window sensors, 30 door sensors and 200 movement detectors
» Voltage drop sensor
* Actions
* When an intruder is detected, police are called automatically.
* Lights are switched on in rooms with active sensors.
* An audible alarm is switched on.
* The system switches automatically to backup power when a voltage drop is
detected.
The R-T system design process:
 Identify stimuli and associated responses
* Define the timing constraints associated with each stimulus and response
* Allocate system functions to concurrent processes
» Design algorithms for stimulus processing and response generation
* Design a scheduling system which ensures that processes will always be scheduled to
meet their deadlines
Control systems:
* A burglar alarm system is primarily a monitoring system. It collects data from sensors but
no real-time actuator control
» Control systems are similar but, in response to sensor values, the system sends control
signals to actuators
* An example of a monitoring and control system is a system which monitors temperature
and switches heaters on and off
Data acquisition systems:
* Collect data from sensors for subsequent processing and analysis.
» Data collection processes and processing processes may have different periods and
deadlines.
» Data collection may be faster than processing e.g. collecting information about an
explosion.
+ Circular or ring buffers are a mechanism for smoothing speed differences.

Software Engineering

A temperature control system:

500Hz
proces
s
Senso
500Hz T
i values
Thermostat
Switch
500Hz command Thermostat process
Room Qumber

,‘
I
atlfl -

N

",

g’
-
N

~ Heater Furnace

control
DT process

Reactor data collection:
* A system collects data from a set of sensors monitoring the neutron flux from a nuclear
reactor.
» Flux data is placed in a ring buffer for later processing.
* The ring buffer is itself implemented as a concurrent process so that the collection and
processing processes may be synchronized.

actQr flux monitoring:
Se‘M’rsT@h data flow is a sensor value)

)

O Sensor Sensor data Process Disola
J process buffer data pray

Mutual exclusion:
* Producer processes collect data and add it to the buffer. Consumer processes take data
from the buffer and make elements available

Software Engineering

* Producer and consumer processes must be mutually excluded from accessing the same
element.
The buffer must stop producer processes adding information to a full buffer and consumer
processes trying to take information from an empty buffer

System Design

* Design both the hardware and the software associated with system. Partition functions to
either hardware or software
» Design decisions should be made on the basis on non-functional system requirements

» Hardware delivers better performance but potentially longer development and less scope for
change

System elements
» Sensors control processes

* Collect information from sensors. May buffer information collected in response t o a
sensor stimulus

» Data processor

» Carries out processing of collected information and computes the system response
* Actuator control

* Generates control signals for the actuator

Sensor/actuator processes

7

’\ Act uat or
Response

Act uat or '
contro 1 y.

Dat a Y
procssor /

Hardware and software design

Software Engineering

Establishsystem
requ irements

Partit on requ
irements

R-T systems design process

Identify the stimuli to be processed and the required responses to these stimuli

For each stimulus and response, identify the timing constraints

Aggregate the stimulus and response processing into concurrent processes. A process may be
associated with each class of stimulus and response

Design algorithms to process each class of stimulus and response. These must meet the given
timing requirements

Design a scheduling system which will ensure that processes are started in time to meet their
deadlines

Integrate using a real-time executive or operating system

Timing constraints

For aperiodic stimuli, designers make assumptions about probability of occurrence of stimuli.
May mean that certain design strategies such as object-oriented design cannot be used
because of the additional overhead involved

State machine modelling

The effect of a stimulus in a real-time system may trigger a transition from one state to
another.

Finite state machines can be used for modelling real-time systems.

However, FSM models lack structure. Even simple systems can have a complex model.
The UML includes notations for defining state machine models

Microwave oven state machine

Software Engineering

Full
Fu 1l pow er
d o: set po wer
=600

Timer —I
Wait ing \ "
do:displ Nu mber
" time Set ti me Op erati on
time
d o: get nu mber Eop o
: exi t: s et t ime o
Hal = <
Halt pqver .—’:‘? . Door = ““-.
ot _im';r closed ’i::'? Cancel
4 Door “\“. St i L
B open = 7 Sy stem =
H e
En abl ed fault 7 Waiting O\
- o Do or d o: di sp lay do: d'l sp lay
g3 00 i closed \ 'Ready’ ti me

Disab led

d o: di sp lay
'Waiting'

A

Real-time programming
Hard-real time systems may have to programmed in assembly language to ensure that

deadlines are met

» Languages such as C allow efficient programs to be written but do not have constructs to
support concurrency or shared resource management
Ada as a language designed to support real-time systems design so includes a general

purpose concurrency mechanism
Java as a real-time language
Java supports lightweight concurrency (threads and synchonized methods) and can be used

for some soft real-time systems
Java 2.0 is not suitable for hard RT programming or programming where precise control of

timing is required
Not possible to specify thread execution time

Uncontrollable garbage collection
Not possible to discover queue sizes for shared resources

Variable virtual machine implementation
Not possible to do space or timing analysis

Real Time Executives

Real-time executives are specialised operating systems which manage processes in the RTS
Responsible for process management and resource (processor and memory) allocation

Storage management, fault management.
Components depend on complexity of system

Executive components
Real-time clock
Provides information for process scheduling.

» Interrupt handler

Software Engineering

* Manages aperiodic requests for service.
» Scheduler

* Chooses the next process to be run.
» Resource manager

* Allocates memory and processor resources.
» Dispatchers

+ Starts process execution.

Non-stop system components
» Configuration manager
* Responsible for the dynamic reconfiguration of the system software and hardware.
Hardware modules may be replaced and software upgraded without stopping the
systems
» Fault manager
* Responsible for detecting software and hardware faults and taking appropriate actions
(e.g. switching to backup disks) to ensure that the system continues in operation
Real-time executive components

Scheduling
infommation
“ti A e
Real-time - Soh eduley _ Interrup t
clock = | handler

Pro ces s reso urce
requirements

.||||E......

“,

Pro ces ses
await in g
resources

Avail able
reso urce 1
ist

Reso ur ce
manag er

ReleasV
p 10 ces ses reso urces
Despatcher i

Pro cessor
list

L

™Sk Executing
process

Process priority

» The processing of some types of stimuli must sometimes take priority

» Interrupt level priority. Highest priority which is allocated to processes requiring a very fast
response

» Clock level priority. Allocated to periodic processes

» Within these, further levels of priority may be assigned

Interrupt servicing

» Control is transferred automatically to a pre-determined memory location

» This location contains an instruction to jump to an interrupt service routine

» Further interrupts are disabled, the interrupt serviced and control returned to the interrupted
process

Software Engineering

* Interrupt service routines MUST be short, simple and fast

Periodic process servicing

» In most real-time systems, there will be several classes of periodic process, each with
different periods (the time between executions), execution times and deadlines (the time by
which processing must be completed)

» The real-time clock ticks periodically and each tick causes an interrupt which schedules the
process manager for periodic processes

» The process manager selects a process which is ready for execution

Process management

» Concerned with managing the set of concurrent processes

» Periodic processes are executed at pre-specified time intervals

» The executive uses the real-time clock to determine when to execute a process
» Process period - time between executions

» Process deadline - the time by which processing must be complete

RTE process management
Scheduler

Resource manager Despatcher

Start execution on an
available processor

Choose process
for execution

Allocat ¢ memory
and processor

Process switching

» The scheduler chooses the next process to be executed by the processor. This depends on a
scheduling strategy which may take the process priority into account

» The resource manager allocates memory and a processor for the process to be executed

» The despatcher takes the process from ready list, loads it onto a processor and starts
execution

Scheduling strategies
* Non pre-emptive scheduling
* Once a process has been scheduled for execution, it runs to completion or until it is
blocked for some reason (e.g. waiting for 1/0)
* Pre-emptive scheduling
* The execution of an executing processes may be stopped if a higher priority process
requires service
* Scheduling algorithms
* Round-robin
* Shortest deadline first

Data Acquisition System

» Collect data from sensors for subsequent processing and analysis.

= Data collection processes and processing processes may have different periods and
deadlines.

Software Engineering

= Data collection may be faster than processing
e.g. collecting information about an explosion, scientific experiments
» Circular or ring buffers are a mechanism for smoothing speed differences.

Reactor data collection

* A system collects data from a set of sensors monitoring the neutron flux from a nuclear
reactor.

» Flux data is placed in a ring buffer for later processing.

» The ring buffer is itself implemented as a concurrent process so that the collection and
processing processes may be synchronized.

Reactor flux monitoring
Sensors (each data flow is a sensor
value)

Processed

Sensor
OJ\ identifier flux level

Producer
process

Mutual exclusion

» Producer processes collect data and add it to the buffer. Consumer processes take data from
the buffer and make elements available.

* Producer and consumer processes must be mutually excluded from accessing the same
element.

» The buffer must stop producer processes adding information to a full buffer and consumer
processes trying to take information from an empty buffer.

Java implementation of a ring buffer
class CircularBuffer
{

int bufsize ;

SensorRecord [] store ;

Software Engineering

int numberOfEntries =0 ;
int front =0, back =0 ;

CircularBuffer (int n) {

bufsize =n ;

store = new SensorRecord [bufsize] ;
} // CircularBuffer

synchronized void put (SensorRecord rec) throws InterruptedException

{
if (numberOfEntries == bufsize)
wait () ;
store [back] = new SensorRecord (rec.sensorld, rec.sensorVal) ;
back =back + 1 ;
if (back == bufsize)
back =0 ;
numberOfEntries = numberOfEntries + 1 ;
notify () ;
} // put
synchronized SensorRecord get () throws InterruptedException
{
SensorRecord result = new SensorRecord (-1, -1) ;
if (numberOfEntries == 0)
wait () ;
result = store [front] ;
front = front + 1 ;
if (front == bufsize)
front=0;
numberOfEntries = numberOfEntries - 1 ;
notify () ;
return result ;
} /] get

} // CircularBuffer
Monitoring and Control System

» Important class of real-time systems

» Continuously check sensors and take actions depending on sensor values

* Monitoring systems examine sensors and report their results

» Control systems take sensor values and control hardware actuators

* Burglar alarm system e.g

* A system is required to monitor sensors on doors and windows to detect the presence of
intruders in a building

» When a sensor indicates a break-in, the system switches on lights around the area and calls
police automatically

Software Engineering

» The system should include provision for operation without a mains power supply

Burglar alarm system
» Sensors
* Movement detectors, window sensors, door sensors.
* 50 window sensors, 30 door sensors and 200 movement detectors
* Voltage drop sensor
* Actions
* When an intruder is detected, police are called automatically.
* Lights are switched on in rooms with active sensors.
* An audible alarm is switched on.
» The system switches automatically to backup power when a voltage drop is detected.

The R-T system design process
» Identify stimuli and associated responses
» Define the timing constraints associated with each stimulus and response
» Allocate system functions to concurrent processes
» Design algorithms for stimulus processing and response generation
» Design a scheduling system which ensures that processes will always be scheduled to meet
their deadlines
» Stimuli to be processed
» Power failure
* Generated by a circuit monitor. When received, the system must switch to backup
power within 50 ms
* Intruder alarm
« Stimulus generated by system sensors. Response is to call the police, switch on
building lights and the audible alarm

Timing requirements

Stimulus/Response Timing requirements

Power fail interrupt The switch to backup power must be completed
within a deadline of 50 ms.

Door alarm Each door alarm should be polled twice per second.

Window alarm Each window alarm should be polled twice per
second.

Movement detector Each movement detector should be polled twice per
second.

Audible alarm The audible alarm should be switched on within 1/2
second of an alarm being raised by a sensor.

Lights switch The lights should be switched on within 1/2 second
of an alarm being raised by a sensor.

Communications The call to the police should be started within 2
seconds of an alarm being raised by a sensor.

Voice synthesiser A synthesised message should be available within 4

seconds of an alarm being raised by a sensor.

Software Engineering

Process architecture
4 00 Hz

6 OHz 1 00 Hz

Door sen sor W ind ow sen sor
process 4 process

Sensorstatus ~ Sensor status

Movement
detectorprocess /
_ A

Det ector s tat us

Alarm s ys tem

ﬁSu il d ng mon itor CO mmu ni cat ion
process proces s

Power fai lu re
int errupt Bu il di ng mon itor ROO mnumb er

&
10 CeS S /
p /

Al arm

Au d1 bl e alarm / ghtl ng co ntrol ‘““-“_ / Vo ice s yn thesizer | p
prooess pmoess 10 CeS S

-IIII||'-

Al ert mess ag e

Building monitor process
class BuildingMonitor extends Thread {
BuildingSensor win, door, move ;

Siren siren = new Siren () ;

Lights lights = new Lights () ;

Synthesizer synthesizer = new Synthesizer () ;

DoorSensors doors = new DoorSensors (30) ; WindowSensors
windows = new WindowSensors (50) ;

MovementSensors movements = new MovementSensors (200) ;

PowerMonitor pm = new PowerMonitor () ;

BuildingMonitor()
{

// initialise all the sensors and start the processes
siren.start () ; lights.start () ;

synthesizer.start () ; windows.start () ;
doors.start () ; movements.start () ; pm.start () ;

Software Engineering

public void run ()

{
mtroom=0 ;
while (true)

{
// poll the movement sensors at least twice per second (400 Hz)
move = movements.getVal () ;
// poll the window sensors at least twice/second (100 Hz)
win = windows.getVal () ;
// poll the door sensors at least twice per second (60 Hz)
door = doors.getVal () ;
if (move.sensorVal == 1 | door.sensorVal == 1 | win.sensorVal == 1)
{
// a sensor has indicated an intruder
if (move.sensorVal == 1) room = move.room ;
if (door.sensorVal == 1) room = door.room ;
if (win.sensorVal == 1) room = win.room ;
lights.on (room) ; siren.on () ; synthesizer.on (room) ;
break ;
}
}

lights.shutdown () ; siren.shutdown () ; synthesizer.shutdown () ;
windows.shutdown () ; doors.shutdown () ; movements.shutdown () ;

} // run
} //BuildingMonitor

A temperature control system

500Hz
V4 Sensor
\ process
Sensor
500Hz i values

v
.|||||E:....
.|||||E:....... -

/7 Thermosta
process

Sw itch command
500 Hz Room number

Heater control ™\
process

Thermostat process

Furnace '
control process /

Control systems

