Software Engineering

* A burglar alarm system is primarily a monitoring system. It collects data from sensors but no
real-time actuator control

» Control systems are similar but, in response to sensor values, the system sends control
signals to actuators

* An example of a monitoring and control system is a system which monitors temperature and
switches heaters on and off

UNIT IV

TESTING
Taxonomy of Software Testing

» C(lassified by purpose, software testing can be divided into: correctness testing, performance
testing, and reliability testing and security testing.

» Classified by life-cycle phase, software testing can be classified into the following
categories: requirements phase testing, design phase testing, program phase testing,
evaluating test results, installation phase testing, acceptance testing and maintenance testing.

* By scope, software testing can be categorized as follows: unit testing, component testing,
integration testing, and system testing.

Correctness testing

Correctness is the minimum requirement of software, the essential purpose of testing. It is
used to tell the right behavior from the wrong one. The tester may or may not know the inside
details of the software module under test, e.g. control flow, data flow, etc. Therefore, either a
white-box point of view or black-box point of view can be taken in testing software. We must
note that the black-box and white-box ideas are not limited in correctness testing only.

- Black-box testing

- White-box testing

Performance testing

Not all software systems have specifications on performance explicitly. But every system
will have implicit performance requirements. The software should not take infinite time or
infinite resource to execute. "Performance bugs" sometimes are used to refer to those design
problems in software that cause the system performance to degrade.
Performance has always been a great concern and a driving force of computer evolution.
Performance evaluation of a software system usually includes: resource usage, throughput,
stimulus-response time and queue lengths detailing the average or maximum number of tasks
waiting to be serviced by selected resources. Typical resources that need to be considered
include network bandwidth requirements, CPU cycles, disk space, disk access operations, and
memory usage. The goal of performance testing can be performance bottleneck identification,
performance comparison and evaluation, etc.

Reliability testing

Software Engineering

Software reliability refers to the probability of failure-free operation of a system. It is
related to many aspects of software, including the testing process. Directly estimating software
reliability by quantifying its related factors can be difficult. Testing is an effective sampling
method to measure software reliability. Guided by the operational profile, software testing
(usually black-box testing) can be used to obtain failure data, and an estimation model can be
further used to analyze the data to estimate the present reliability and predict future reliability.
Therefore, based on the estimation, the developers can decide whether to release the software,
and the users can decide whether to adopt and use the software. Risk of using software can also
be assessed based on reliability information.

Security testing

Software quality, reliability and security are tightly coupled. Flaws in software can be
exploited by intruders to open security holes. With the development of the Internet, software
security problems are becoming even more severe.
Many critical software applications and services have integrated security measures against
malicious attacks. The purpose of security testing of these systems include identifying and
removing software flaws that may potentially lead to security violations, and validating the
effectiveness of security measures. Simulated security attacks can be performed to find
vulnerabilities.

Types of S/'W Test

Acceptance testing
Testing to verify a product meets customer specified requirements. A customer usually
does this type of testing on a product that is developed externally.

Compatibility testing

This is used to ensure compatibility of an application or Web site with different browsers,
OSs, and hardware platforms. Compatibility testing can be performed manually or can be driven
by an automated functional or regression test suite.

Conformance testing

This is used to verify implementation conformance to industry standards. Producing tests
for the behavior of an implementation to be sure it provides the portability, interoperability,
and/or compatibility a standard defines.

Integration testing

Modules are typically code modules, individual applications, client and server
applications on a network, etc. Integration Testing follows unit testing and precedes system
testing.

Load testing
Load testing is a generic term covering Performance Testing and Stress Testing.

Performance testing

Software Engineering

Performance testing can be applied to understand your application or WWW site's
scalability, or to benchmark the performance in an environment of third party products such as
servers and middleware for potential purchase. This sort of testing is particularly useful to
identify performance bottlenecks in high use applications. Performance testing generally
involves an automated test suite as this allows easy simulation of a variety of normal, peak, and
exceptional load conditions.

Regression testing

Similar in scope to a functional test, a regression test allows a consistent, repeatable
validation of each new release of a product or Web site. Such testing ensures reported product
defects have been corrected for each new release and that no new quality problems were
introduced in the maintenance process. Though regression testing can be performed manually an
automated test suite is often used to reduce the time and resources needed to perform the
required testing.

System testing
Entire system is tested as per the requirements. Black-box type testing that is based on
overall requirements specifications, covers all combined parts of a system.

End-to-end testing

Similar to system testing, involves testing of a complete application environment in a
situation that mimics real-world use, such as interacting with a database, using network
communications, or interacting with other hardware, applications, or systems if appropriate.

Sanity testing

Testing is to determine if a new software version is performing well enough to accept it
for a major testing effort. If application is crashing for initial use then system is not stable
enough for further testing and build or application is assigned to fix.

Alpha testing
In house virtual user environment can be created for this type of testing. Testing is done
at the end of development. Still minor design changes may be made as a result of such testing.

Beta testing
Testing is typically done by end-users or others. This is the final testing before releasing
the application to commercial purpose.

Software Testing Techniques
Software Testing:
Testing is the process of exercising a program with the specific intent of finding errors prior to
delivery to the end user.
Testing Objectives:
» Testing is the process of executing a program with the intent of finding errors.
* A good test case is one with a high probability of finding an as-yet undiscovered error.
* A successful test is one that discovers an as-yet-undiscovered error.

Software Engineering

Testing Principles:
» All tests should be traceable to customer requirements.
» Tests should be planned before testing begins.
+ 80% ofall errors are in 20% of the code.
* Testing should begin in the small and progress to the large.
» Exhaustive testing is not possible.
Testing should be conducted by an independent third party if possible.
Software Defect Causes:
* Specification may be wrong.
* Specification may be a physical impossibility.
» Faulty program design.
* Program may be incorrect.

Types of Errors:
* Algorithmic error.
+ Computation & precision error.
* Documentation error.
» Capacity error or boundary error.
* Timing and coordination error.
* Throughput or performance error.
* Recovery error.
* Hardware & system software error.
» Standards & procedure errors.
Software Testability Checklist — 1:
* Operability
— if it works better it can be tested more efficiently
* Observability
— what you see is what you test
* Controllability
— if software can be controlled better the it is more that testing can be automated
and optimized
Software Testability Checklist — 2:
* Decomposability
— controlling the scope of testing allows problems to be isolated quickly and
retested intelligently
+ Stability
— the fewer the changes, the fewer the disruptions to testing
* Understandability
— the more information that is known, the smarter the testing can be done
Good Test Attributes:
* A good test has a high probability of finding an error.
* A good test is not redundant.
* A good test should be best of breed.
* A good test should not be too simple or too complex.
Test Strategies:
* Black-box or behavioral testing

Software Engineering

— knowing the specified function a product is to perform and demonstrating correct
operation based solely on its specification without regard for its internal logic
* White-box or glass-box testing
— knowing the internal workings of a product, tests are performed to check the
workings of all possible logic paths
White-Box Testing:
Basis Path Testing:
* White-box technique usually based on the program flow graph
* The cyclo matic complexity of the program computed from its flow graph using the
formula V(G) = E — N + 2 or by counting the conditional statements in the PDL
representation and adding 1
* Determine the basis set of linearly independent paths (the cardinality of this set is the
program cyclomatic complexity)
» Prepare test cases that will force the execution of each path in the basis set.

Cyclomatic Complexity:
A number of industry studies have indicated that the higher V(G), the higher the probability or
errors.
Control Structure Testing — 1:
* White-box techniques focusing on control structures present in the software
* Condition testing (e.g. branch testing)
— focuses on testing each decision statement in a software module
— it is important to ensure coverage of all logical combinations of data that may be
processed by the module (a truth table may be helpful)
Control Structure Testing — 2:
+ Data flow testing
— selects test paths based according to the locations of variable definitions and uses
in the program (e.g. definition use chains)
* Loop testing
— focuses on the validity of the program loop constructs (i.e. while, for, go to)
— involves checking to ensure loops start and stop when they are supposed to
(unstructured loops should be redesigned whenever possible)
Loop Testing: Simple Loops:
Minimum conditions—Simple Loops
1. skip the loop entirely
2. only one pass through the loop
3. two passes through the loop
4. m passes through the loop m <n
5. (n-1), n, and (n+1) passes through the loop
where n is the maximum number of allowable passes
Loop Testing: Nested Loops:
Nested Loops
Start at the innermost loop. Set all outer loops to their minimum iteration parameter values.
Test the min+1, typical, max-1 and max for the innermost loop, while holding the outer loops at
their minimum values.

Software Engineering

Move out one loop and set it up as in step 2, holding all other loops at typical values. Continue
this step until the outermost loop has been tested.
Concatenated Loops
If the loops are independent of one another
then treat each as a simple loop
else* treat as nested loops
end if*
for example, the final loop counter value of loop 1 is
used to initialize loop 2.

Black-Box Testing:
Graph-Based Testing — 1:
» Black-box methods based on the nature of the relationships (links) among the program
objects (nodes), test cases are designed to traverse the entire graph
* Transaction flow testing
— nodes represent steps in some transaction and links represent logical connections
between steps that need to be validated
* Finite state modeling
— nodes represent user observable states of the software and links represent state
transitions
Graph-Based Testing — 2:
+ Data flow modeling
— nodes are data objects and links are transformations of one data object to another
data object
* Timing modeling
— nodes are program objects and links are sequential connections between these
objects
— link weights are required execution times
Equivalence Partitioning:
* Black-box technique that divides the input domain into classes of data from which test
cases can be derived
* An ideal test case uncovers a class of errors that might require many arbitrary test cases
to be executed before a general error is observed
Equivalence Class Guidelines:
« If input condition specifies a range, one valid and two invalid equivalence classes are
defined
« If an input condition requires a specific value, one valid and two invalid equivalence
classes are defined
« If an input condition specifies a member of a set, one valid and one invalid equivale nce
class is defined
+ Ifan input condition is Boolean, one valid and one invalid equivalence class is defined
* Boundary Value Analysis - 1
+ Black-box technique
— focuses on the boundaries of the input domain rather than its center
* Guidelines:

Software Engineering

— If input condition specifies a range bounded by values a and b, test cases should
include a and b, values just above and just below a and b
— If an input condition specifies and number of values, test cases should be exercise
the minimum and maximum numbers, as well as values just above and just below
the minimum and maximum values
Boundary Value Analysis — 2
1. Apply guidelines 1 and 2 to output conditions, test cases should be designed to
produce the minimum and maximum output reports
2. If internal program data structures have boundaries (e.g. size limitations), be
certain to test the boundaries
Comparison Testing:
* Black-box testing for safety critical systems in which independently developed
implementations of redundant systems are tested for conformance to specifications
* Often equivalence class partitioning is used to develop a common set of test cases for
each implementation
Orthogonal Array Testing — 1:
* Black-box technique that enables the design of a reasonably small set of test cases that
provide maximum test coverage
* Focus is on categories of faulty logic likely to be present in the software component
(without examining the code)
Orthogonal Array Testing — 2:
» Priorities for assessing tests using an orthogonal array
— Detect and isolate all single mode faults
— Detect all double mode faults
— Multimode faults
Software Testing Strategies:
Strateglc Approach to Testing — 1:
Testing begins at the component level and works outward toward the integration of the
entire computer-based system.
+ Different testing techniques are appropriate at different points in time.
* The developer of the software conducts testing and may be assisted by independent test
groups for large projects.
* The role of the independent tester is to remove the conflict of interest inherent when the
builder is testing his or her own product.
Strategic Approach to Testing — 2:
* Testing and debugging are different activities.
* Debugging must be accommodated in any testing strategy.
* Need to consider verification issues
— are we building the product right?
* Need to Consider validation issuesare we building the right product?
Verification vs validation:
* Verification:
"Are we building the product right" The software should conform to its specification
Validation:
"Are we building the right product" The software should do what the user really requires
The V & V process:

Software Engineering

* As a whole life-cycle process - V & V must be applied at each stage in the software
process.
* Has two principal objectives
— The discovery of defects in a system
— The assessment of whether or not the system is usable in an operational situation.
» Strategic Testing Issues - 1 Specify product requirements in a quantifiable manner before
testing starts.
* Specify testing objectives explicitly.
» Identify the user classes of the software and develop a profile for each.
* Develop a test plan that emphasizes rapid cycle testing.
Strategic Testing Issues — 2:
* Build robust software that is designed to test itself (e.g. use anti-bugging).
+ Use effective formal reviews as a filter prior to testing.
* Conduct formal technical reviews to assess the test strategy and test cases.
Testing Strategy:
unit test integration
test

system
!gst

alidation
test

Unit Testing:

engineer test cases

Software Engineering

* Program reviews.
* Formal verification.
* Testing the program itself.
— black box and white box testing.
Black Box or White Box?:
* Maximum # of logic paths - determine if white box testing is possible.
* Nature of input data.
* Amount of computation involved.
+ Complexity of algorithms.
Unit Testing Details:
» Interfaces tested for proper information flow.
* Local data are examined to ensure that integrity is maintained.
* Boundary conditions are tested.
* Basis path testing should be used.
+ All error handling paths should be tested.
» Drivers and/or stubs need to be developed to test incomplete software.

Unit Testing:

- interface

local data structures
boundary conditions
independent paths
error handling paths

test cases

Unit Test Environment:

Software Engineering

interface

local data structures

Module " boundary conditions
independent paths

error handling paths

test cases

RESULTS

Integration Testing:
* Bottom - up testing (test harness).
* Top - down testing (stubs).
* Regression Testing.
* Smoke Testing

Top Down Integration:

stubs are replaced one at
a time, "depth first"

top module is tested with
stubs

/\ as new modules are integrated,
some subset of tests is re-run

Top-Down Integration Testing:
* Main program used as a test driver and stubs are substitutes for components directly
subordinate to it.
* Subordinate stubs are replaced one at a time with real components (following the depth-
first or breadth-first approach).
» Tests are conducted as each component is integrated.
* On completion of each set of tests and other stub is replaced with a real component.

Software Engineering

* Regression testing may be used to ensure that new errors not introduced.
Bottom-Up Integration:

drivers are replaced one at a
time, “"depth first™

worker modules are grouped into
builds and integrated

cluster

Bottom-Up Integration Testing:

* Low level components are combined in clusters that perform a specific software function.

* A driver (control program) is written to coordinate test case input and output.

* The cluster is tested.

* Drivers are removed and clusters are combined moving upward in the program structure.

Regression Testing:

* The selective retesting of a software system that has been modified to ensure that any
bugs have been fixed and that no other previously working functions have failed as a
result of the reparations and that newly added features have not created problems with
previous versions of the software. Also referred to as verification testing, regression
testing is initiated after a programmer has attempted to fix a recognized problem or has
added source code to a program that may have inadvertently introduced errors. It is a
quality control measure to ensure that the newly modified code still complies with its
specified requirements and that unmodified code has not been affected by the
maintenance activity.

Regression Testing:
+ Regression test suit contains 3 different classes of test cases
— Representative sample of existing test cases is used to exercise all software
functions.
— Additional test cases focusing software functions likely to be affected by the
change.
— Tests cases that focus on the changed software components.
Smoke Testing:
» Software components already translated into code are integrated into a build.
» A series of tests designed to expose errors that will keep the build from performing its
functions are created.
* The build is integrated with the other builds and the entire product is smoke tested daily
using either top-down or bottom integration.
Validation Testing:

Software Engineering

* Ensure that each function or performance characteristic conforms to its specification.

» Deviations (deficiencies) must be negotiated with the customer to establish a means for
resolving the errors.

* Configuration review or audit is used to ensure that all elements of the software
configuration have been properly developed, cataloged, and documented to allow its
support during its maintenance phase.

Acceptance Testing:

* Making sure the software works correctly for intended user in his or her normal work
environment.

* Alpha test

— version of the complete software is tested by customer under the supervision of
the developer at the developer*s site

* Beta test

— version of the complete software is tested by customer at his or her own site
without the developer being present
System Testing:
* Recovery testing
— checks system*s ability to recover from failures
* Security testing
— verifies that system protection mechanism prevents improper penetration or data
alteration

+ Stress testing

— program is checked to see how well it deals with abnormal resource demands

* Performance testing

— tests the run-time performance of software
Performance Testing:

» Stress test.

* Volume test.

» Configuration test (hardware & software).

» Compatibility.

* Regression tests.

* Security tests.

* Timing tests.

* Environmental tests.

* Quality tests.

* Recovery tests.

* Maintenance tests.

* Documentation tests.

* Human factors tests.

Testing Life Cycle:
» Establish test objectives.
* Design criteria (review criteria).
— Correct.
— Feasible.
— Coverage.
— Demonstrate functionality.

Software Engineering

* Writing test cases.
» Testing test cases.
* Execute test cases.
* Evaluate test results.
Testing Tools:
* Simulators.
* Monitors.
* Analyzers.
» Test data generators.
Document Each Test Case:
* Requirement tested.
» Facet / feature / path tested.
* Person & date.
* Tools & code needed.
+ Test data & instructions.
» Expected results.
* Actual test results & analysis
» Correction, schedule, and signoff.
Debugging:
» Debugging (removal of a defect) occurs as a consequence of successful testing.
» Some people better at debugging than others.
* Is the cause of the bug reproduced in another part of the program?
« What -next bugll might be introduced by the fix that is being proposed?
* What could have been done to prevent this bug in the first place?

Software Implementation techniques

» Implementation techniques include imperative languages (object-oriented or procedural),
functional languages, and logic languages.

» Software Implementation Techniques include process and thread scheduling, synchronization
and concurrency primitives, file management, memory management, performance,
networking facilities, and user interfaces. Software Implementation Techniques is designed
to facilitate determining what is required to implement a specific operating system function.

Procedural programming
Procedural programming can sometimes be used as a synonym for imperative

programming (specifying the steps the program must take to reach the desired state), but can also
refer (as in this article) to a programming paradigm, derived from structured programming, based
upon the concept of the procedure call. Procedures, also known as routines, subroutines,
methods, or functions (not to be confused with mathematical functions, but similar to those used
in functional programming) simply contain a series of computational steps to be carried out. Any
given procedure might be called at any point during a program's execution, including by other
procedures or itself. Some good examples of procedural programs are the Linux Kernel, GIT,
Apache Server, and Quake III Arena.

Object-oriented programming

Software Engineering

Object-oriented programming (OOP) is a programming paradigm that uses "objects" —
data structures consisting of data fields and methods together with their interactions — to design
applications and computer programs. Programming techniques may include features such as data
abstraction, encapsulation, modularity, polymorphism, and inheritance. Many modern
programming languages now support OOP.

An object-oriented program may thus be viewed as a collection of interacting objects, as
opposed to the conventional model, in which a program is seen as a list of tasks (subroutines) to
perform. In OOP, each object is capable o f receiving messages, processing data, and sending
messages to other objects. Each object can be viewed as an independent 'machine' with a distinct
role or responsibility. The actions (or "methods") on these objects are closely associated with the
object. For example, OOP data structures tend to 'carry their own operators around with them' (or
at least "inherit" them from a similar object or class). In the conventional model, the data and
operations on the data don't have a tight, formal association.

functional programming is a programming paradigm that treats computation as the evaluation
of mathematical functions and avoids state and mutable data. It emphasizes the application of
functions, in contrast to the imperative programming style, which emphasizes changes in state.
Functional programming has its roots in lambda calculus, a formal system developed in the
1930s to investigate function definition, function application, and recursion. Many functional
programming languages can be viewed as elaborations on the lambda calculus.

In practice, the difference between a mathematical function and the notion of a "function"
used in imperative programming is that imperative functions can have side effects, changing the
value of already calculated computations. Because of this they lack referential transparency, i.e.
the same language expression can result in different values at different times depending on the
state of the executing program. Conversely, in functional code, the output value of a function
depends only on the arguments that are input to the function, so calling a function f twice with
the same value for an argument x will produce the same result f(x) both times. Eliminating side
effects can make it much easier to understand and predict the behavior of a program, which is
one of the key motivations for the development of functional programming.JavaScript, one of the
most widely employed languages today, incorporates functional programming capabilities.

Logic programming is, in its broadest sense, the use of mathematical logic for computer
programming. In this view of logic programming, which can be traced at least as far back as
John McCarthy's [1958] advice-taker proposal, logic is used as a purely declarative
representation language, and a theorem-prover or model-generator is used as the problem-solver.
The problem-solving task is split between the programmer, who is responsible only for ensuring
the truth of programs expressed in logical form, and the theorem-prover or model-generator,
which is responsible for solving problems efficiently.

Oracle’s Application Implementation Method

AIM provides with an integrated set of templates, procedures, PowerPoint presentations,
spreadsheets, and project plans for implementing the applications. AIM was such a success,
Oracle created a subset of the templates, called it AIM Advantage, and made it available as a
product to customers and other consulting firms. Since its initial release, AIM has been revised
and improved several times with new templates and methods.

Software Engineering

AIM Is a Six-Phase Method

Because the Oracle ERP Applications are software modules buy from a vendor, different
implementation methods are used than the techniques used for custom developed systems. AIM
has six major phases:
» Definition phase: During this phase, you plan the project, determine business objectives,
and verify the feasibility of the project for given time, resource, and budget limits.
* Operations Analysis phase: Includes documents business requirements, gaps in the
software (which can lead to customizations), and system architecture requirements. Results of
the analysis should provide a proposal for future business processes, a technical architecture
model, an application architecture model, workarounds for application gaps, performance testing
models, and a transition strategy to migrate to the new systems. Another task that can begin in
this phase is mapping of legacy data to Oracle Application APIs or open interfaces—data
conversion.
* Solution Design phase—Used to create designs for solutions that meet future
business requirements and processes. The design of your future organization comes alive during
this phase as customizations and module configurations are finalized.
* Build phase—During this phase of AIM, coding and testing of customizations,
enhancements, interfaces, and data conversions happens. In addition, one or more conference
room pilots test the integrated enterprise system. The results of the build phase should be a
working, tested business system solution.
» Transition phase—During this phase, the project team delivers the finished
solution to the enterprise. End-user training and support, management of change, and data
conversions are major activities of this phase.
* Production phase—Starts when the system goes live. Technical people work to
stabilize and maintain the system under full transaction loads. Users and the implementation
team begin a series of refinements to minimize unfavorable impacts and realize the business
objectives identified in the definition phase.

Rapid Implementations
In the late 1990s as Y2K approached, customers demanded and consulting firms discovered

faster ways to implement packaged software applicat ions. The rapid implementation became

possible for certain types of customers. The events that converged in the late 1990s to provide
faster implementations include the following:

* Many smaller companies couldn‘t afford the big ERP project. If the software vendors and
consulting firms were going to sell to the -middle marketll companies, they had to
develop more efficient methods.

» Many dotcoms needed a financial infrastructure; ERP applications filled the need, and rapid
implementation methods provided the way.

» The functionality of the software improved a lot, many gaps were eliminated, and more
companies could implement with fewer customizations.

e After the big, complex companies implemented their ERP systems, the typical
implementation became less difficult.

» The number of skilled consultants and project managers increased significantly.

» Other software vendors started packaging preprogrammed integration points to the Oracle
ERP modules.

Software Engineering

Rapid implementations focus on delivering a predefined set of functionality. A key set of
business processes is installed in a standard way to accelerate the implementation schedule.
These projects benefit from the use of preconfigured modules and predefined business processes.
You get to reuse the analysis and integration testing from other implementations, and you agree
to ignore all gaps by modifying your business to fit the software. Typically, the enterprise will be
allowed some control over key decisions such as the structure of the chart of accounts. Fixed
budgets are set for training, production support, and data conversions (a limited amount of data).

Phased Implementations

Phased implementations seek to break up the work of an ERP implementation project.
This technique can make the system more manageable and reduce risks, and costs in some cases,
to the enterprise. In the mid-1990s, 4 or 5 was about the maximum number of application
modules that could be launched into production at one time. If you bought 12 or 13 applications,
there would be a financial phase that would be followed by phases for the distribution and
manufacturing applications. As implementation techniques improved and Y2K pressures grew in
the late 1990s, more and more companies started launching most of their applications at the same
time. This method became known as the big-bang approach. Now, each company selects a
phased or big-bang approach based on its individual requirements.

Another approach to phasing can be employed by companies with business units at
multiple sites. With this technique, one business unit is used as a template, and all applications
are completely implemented in an initial phase lasting 10—14 months. Then, other sites
implement the applications in cookie-cutter fashion. The cookie-cutter phases are focused on
end-user training and the differences that a site has from the prototype site. The cookie-cutter
phase can be as short as 9—12 weeks, and these phases can be conducted at several sites
simultaneously. For your reference, we participated in an efficient project where 13 app lications
were implemented big bang—style in July at the Chicago site after about 8 months work. A site in
Malaysia went live in October. The Ireland site started up in November. After a holiday break,
the Atlanta business unit went live in February, and the final site in China started using the
applications in April. Implementing thirteen application modules at five sites in four countries in
sixteen months was pretty impressive.

Case Studies Illustrating Implementation Techniques

Some practical examples from the real world might help to illustrate some of the principles and
techniques of various software implementation methods. These case studies are composites from
about 60 implementation projects we have observed during the past 9 years.

Big companies often have a horrible time resolving issues and deciding on configuration
parameters because there is so much money involved and each of many sites might want to
control decisions about what it considers its critical success factors. For example, we once saw a
large company argue for over two months about the chart of accounts structure, while eight
consultants from two consulting firms tried to referee among the feuding operating units.
Another large company labored for more than six months to unify a mast er customer list for a
centralized receivables and decentralized order entry system.

Transition activities at large companies need special attention. Training end users can be
a logistical challenge and can require considerable planning. For example, if you have 800 users
to train and each user needs an average of three classes of two hours each and you have one
month, how many classrooms and instructors do you need? Another example is that loading data

Software Engineering

from a legacy system can be a problem. If you have one million customers to load into Oracle
receivables at the rate of 5,000/hour and the database administrator allows you to load 20 hours
per day, you have a 10-day task.

Because they spend huge amounts of money on their ERP systems, many big companies
try to optimize the systems and capture specific returns on the investment. However, sometimes
companies can be incredibly insensitive and uncoordinated as they try to make money from their
ERP software. For example, one business announced at the beginning of a project that the
accounts payable department would be cut from 50—-17 employees as soon as the system went
live. Another company decided to centralize about 30 accounting sites into one shared service
center and advised about 60 accountants that they would lose their jobs in about a year. Several
of the 60 employees were offered positions on the ERP implementation team.

Small companies have other problems when creating an implementation team. Occasionally, the
small company tries to put clerical employees on the team and they have problems with issue
resolution or some of the ERP concepts. In another case, one small company didn‘t create the
position of project manager. Each department worked on its own modules and ignored the
integration points, testing, and requirements of other users. When Y2K deadlines forced the
system startup, results were disastrous with a cost impact that doubled the cost of the entire
project.

Project team members at small companies sometimes have a hard time relating to the cost
of the implementation. We once worked with a company where the project manager (who was
also the database administrator) advised me within the first hour of our meeting that he thought
consulting charges of $3/minute were outrageous, and he couldn‘t rationalize how we could
possibly make such a contribution. We agreed a consultant could not contribute $3 in value each
and every minute to his project. However, when I told him we would be able to save him
$10,000/week and make the difference between success and failure, he realized we should get to
work.

Because the small company might be relatively simple to implement and the technical
staff might be inexperienced with the database and software, it is possible that the technical staff
will be on the critical path of the project. If the database administrator can‘t learn how to handle
the production database by the time the users are ready to go live, you might need to hire some
temporary help to enable the users to keep to the schedule. In addition, we often see small
companies with just a single database administrator who might be working 60 or more hours per
week. They feel they can afford to have more DBAs as employees, but they don‘t know how to
establish the right ratio of support staff to user requirements. These companies can burn out a
DBA quickly and then have to deal with the problem of replacing an important skill.

