Software Engineering

UNIT V
SOFTWARE PROJECT MANAGEMENT

Measures and Measurements
» Software measurement is concerned with deriving a numeric value for an attribute of a
software product or process.
» This allows for objective comparisons between techniques and processes.
* Although some companies have introduced measurement programmes, most organisations
still don‘t make systematic use of software measurement.
» There are few established standards in this area.

Software metric
* Any type of measurement which relates to a software system, process or related
documentation
* Lines of code in a program, the Fog index, number of person-days required to
develop a component.
» Allow the software and the software process to be quantified.
» May be used to predict product attributes or to control the software process.
» Product metrics can be used for general predictions or to identify anomalous components.

l

Software
process

Predictor and control metrics

Softw arc
product

Contr ol Predictor
measur ements measur ements

Mana gement
decisions ;

Metrics assumptions

» A software property can be measured.

» The relationship exists between what we can measure and what we want to know. We can
only measure internal attributes but are often more interested in external software attributes.

» This relationship has been formalised and validated.

» It may be difficult to relate what can be measured to desirable external quality attributes.

Internal and external attributes

Software Engineering

= Number of procedur e
// parameters
Cyclomatic comple xity I
Program siz e in lines
| of code

Number of error
messa ges

Length of user man ual I
The measurement process

» A software measurement process may be part of a quality control process.

» Data collected during this process should be maintained as an organisational resource.

* Once a measurement database has been established, comparisons across projects become
possible.

Maintaina bility

Relia bility

Por tability

Usability

/7 Analyse
anomalous
com ponents

Product measurement process
Identify
anom alous -
neasur ements 48
Measure I

to be made

7~ Choose
Select)
components to |
be assessed 4
component

measur ements
characteristics 4

Data collection
* A metrics programme should be based on a set of product and process data.
« Data should be collected immediately (not in retrospect) and, if possible, automatically.
» Three types of automatic data collection
+ Static product analysis;
* Dynamic product analysis;
* Process data collation.

Data accuracy
» Don‘t collect unnecessary data
* The questions to be answered should be decided in advance and the required data
identified.
» Tell people why the data is being collected.
» It should not be part of personnel evaluation.
* Don‘t rely on memory
* Collect data when it is generated not after a project has finished.

Software Engineering

Product metrics
» A quality metric should be a predictor of product quality.
* C(lasses of product metric
* Dynamic metrics which are collected by measurements made of a program in
execution;
» Static metrics which are collected by measurements made of the system
representations;
* Dynamic metrics help assess efficiency and reliability; static metrics help assess
complexity, understand ability and maintainability.

Dynamic and static metrics
* Dynamic metrics are closely related to software quality attributes
» It is relatively easy to measure the response time of a system (performance attribute)
or the number of failures (reliability attribute).
» Static metrics have an indirect relationship with quality attributes
* You need to try and derive a relationship between these metrics and properties such
as complexity, understandability and maintainability.

Software product metrics

Software metric Description

Fan in/Fan-out Fan-in is a measure of the number of functions or methods that

call some other function or method (say X). Fan-out is the
number of functions that are called by function X. A high value
for fan-in means that X is tightly coupled to the rest of the design
and changes to X will have extensive knock-on effects. A high
value for fan-out suggests that the overall complexity of X may
be high because of the complexity of the control logic needed to
coordinate the called components.

Length of code This is a measure of the size of a program. Generally, the larger
the size of the code of a component, the more complex and error-
prone that component is likely to be. Length of code has been
shown to be one of the most reliable metrics for predicting error-
proneness in components.

Cyclomatic complexity | This is a measure of the control complexity of a program. This
control complexity may be related to program understandability. I
discuss how to compute cyclomatic complexity in Chapter 22.

Length of identifiers This is a measure of the average length of distinct identifiers in a
program. The longer the identifiers, the more likely they are to be
meaningful and hence the more understandable the program.

Depth of conditional This is a measure of the depth of nesting of if-statements in a

nesting program. Deeply nested if statements are hard to understand and
are potentially error-prone.

Fog index This is a measure of the average length of words and sentences in

documents. The higher the value for the Fog index, the more
difficult the document is to understand.

Software Engineering

Object-oriented metrics

Object-oriented metric Description

Depth of inheritance tree | This represents the number of discrete levels in the inheritance
tree where sub-classes inherit attributes and operations
(methods) from super-classes. The deeper the inheritance tree,
the more complex the design. Many different object classes may
have to be understood to understand the object classes at the
leaves of the tree.

Method fan-in/fan-out This is directly related to fan-in and fan-out as described above
and means essentially the same thing. However, it may be
appropriate to make a distinction between calls from other
methods within the object and calls from external methods.

Weighted methods per This is the number of methods that are included in a class

class weighted by the complexity of each method. Therefore, a simple
method may have a complexity of 1 and a large and complex
method a much higher value. The larger the value for this
metric, the more complex the object class. Complex objects are
more likely to be more difficult to understand. They may not be
logically cohesive so cannot be reused effectively as super-
classes in an inheritance tree.

Number of overriding This is the number of operations in a super-class that are over-

operations ridden in a sub-class. A high value for this metric indicates that
the super-class used may not be an appropriate parent for the
sub-class.

Measurement analysis
» It is not always obvious what data means
* Analysing collected data is very difficult.
» Professional statisticians should be consulted if available.
» Data analysis must take local circumstances into account.

Measurement surprises
* Reducing the number of faults in a program leads to an increased number of help desk calls
* The program is now thought of as more reliable and so has a wider more diverse
market. The percentage of users who call the help desk may have decreased but the
total may increase;
* A more reliable system is used in a different way from a system where users work
around the faults. This leads to more help desk calls.

ZIPF’s Law

» Zipf's Law as "the observation that frequency of occurrence of some event (P), as a function
of the rank (i) when the rank is determined by the above frequency of occurrence, is a power-

law function P; ~ 1/i with the exponent a close to unity (1)."

Software Engineering

Let P (a random variable) represented the frequency of occurrence of a keyword in a
program listing.
It applies to computer programs written in any modern computer language.
Without empirical proof because it's an obvious finding, that any computer program written
in any programming language has a power law distribution, i.e., some keywords are used
more than others.
Frequency of occurrence of events is inversely proportional to the rank in this frequency of
occurrence.
When both are plotted on a log scale, the graph is a straight line.
we create entities that don't exist except in computer memory at run time; we create logic
nodes that will never be tested because it's impossible to test every logic branch; we create
information flows in quantities that are humanly impossible to analyze with a glance;
Software application is the combination of keywords within the context of a solution and not
their quantity used in a program; context is not a trivial task because the context of an
application is attached to the problem being solved and every problem to solve is different
and must have a specific program to solve it.
Although a program could be syntactically correct, it doesn't mean that the algorithms
implemented solve the problem at hand. What's more, a correct program can solve the wrong
problem. Let's say we have the simple requirement of printing "Hello, World!" A
syntactically correct solution in Java looks as follows:
Public class SayHello {

public static void main(String[] args) {

System.out.println("John Sena!");
b

}

This solution is obviously wrong because it doesn't solve the original requirement. This
means that the context of the solution within the problem being solved needs to be
determined to ensure its quality. In other words, we need to verify that the output matches the
original requirement.

Zip's Law can't even say too much about larger systems.

Software Cost Estimation

Software cost components

Hardware and software costs.
Travel and training costs.
Effort costs (the dominant factor in most projects)
» The salaries of engineers involved in the project;
* Social and insurance costs.
Effort costs must take overheads into account
* Costs of building, heating, lighting.
» Costs of networking and communications.
» Costs of shared facilities (e.g library, staff restaurant, etc.).

Costing and pricing

Estimates are made to discover the cost, to the developer, of producing a software system.

Software Engineering

» There is not a simple relationship between the development cost and the price charged to the
customer.

» Broader organisational, economic, political and business considerations influence the price
charged.

Software productivity

» A measure of the rate at which individual engineers involved in software development
produce software and associated documentation.

» Not quality-oriented although quality assurance is a factor in productivity assessment.

» Essentially, we want to measure useful functionality produced per time unit.

Productivity measures

» Size related measures based on some output from the software process. This may be lines of
delivered source code, object code instructions, etc.

* Function-related measures based on an estimate of the functionality of the delivered
software. Function-points are the best known of this type of measure.

Measurement problems
» Estimating the size of the measure (e.g. how many function points).
= Estimating the total number of programmer months that have elapsed.

» Estimating contractor productivity (e.g. documentation team) and incorporating this
estimate in overall estimate.

Lines of code
» The measure was first proposed when programs were typed on cards with one line per card;

» How does this correspond to statements as in Java which can span several lines or where
there can be several statements on one line.

Productivity comparisons
» The lower level the language, the more productive the programmer
* The same functionality takes more code to implement in a lower-level language than
in a high-level language.
* The more verbose the programmer, the higher the productivity
» Measures of productivity based on lines of code suggest that programmers who write
verbose code are more productive than programmers who write compact code.

Function Point model
Function points
» Based on a combination of program characteristics
» external inputs and outputs;
e user interactions;
» external interfaces;
+ files used by the system.
* A weight is associated with each of these and the function point count is computed by
multiplying each raw count by the weight and summing all values.

Software Engineering

The function point count is modified by complexity of the project
FPs can be used to estimate LOC depending on the average number of LOC per FP for a
given language
+ LOC = AVC * number of function points;
* AVC is a language-dependent factor varying from 200-300 for assemble language to
2-40 for a 4GL;

FPs are very subjective. They depend on the estimator
* Automatic function-point counting is impossible.

COCOMO model
An empirical model based on project experience.
Well-documented, _independent® model which is not tied to a specific software vendor.
Long history from initial version published in 1981 (COCOMO-81) through various
instantiations to COCOMO 2.

COCOMO 2 takes into account different approaches to software development, reuse, etc.

COCOMO 81
Project Formula Description
complexity
Simple PM = 2.4 (KDSI)'"®x M Well-understood applications developed by
small teams.
Moderate PM = 3.0 (KDSI)""?xM More complex projects where team

members may have limited experience of
related systems.

Embedded PM = 3.6 (KDSI)'"®x M Complex projects where the software is part
of a strongly coupled complex of hardware,
software, regulations and operational
procedures.

COCOMO 2

COCOMO 81 was developed with the assumption that a waterfall process would be used and
that all software would be developed from scratch.

Since its formulation, there have been many changes in software engineering practice and
COCOMO 2 is designed to accommodate different approaches to software development.

COCOMO 2 models

COCOMO 2 incorporates a range of sub-models that produce increasingly detailed software
estimates.
The sub-models in COCOMO 2 are:
* Application composition model. Used when software is composed from existing
parts.
» Early design model. Used when requirements are available but design has not yet
started.
* Reuse model. Used to compute the effort of integrating reusable components.

Software Engineering

* Post-architecture model. Used once the system architecture has been designed and
more information about the system is available.

Use of COCOMO 2 models
T Prot i
Number of Based on Application Used for égv%%gggﬁzh?gns
application points scripting, DB

prog ramming etc.

] Initial effort
Number offircton Based on Eealy desnmodel Used for sl estimation based on
points sysemrequirernerss

and design options

Numberoffinesof
code reused or
generated

Based on Used for Effott to integ rate
Reuse model 3= remsablecomponens
or automatically
] generated code

Nunberoffiesd Based on Post-architecture Used for Development effor t
= based on sy stem

design specification

source code model

Application composition model
= Supports prototyping projects and projects where there is extensive reuse.
» Based on standard estimates of developer productivity in application (object) points/month.
» Takes CASE tool use into account.
e Formula is
o PM=(NAP (I -%reuse/100))/PROD
o PM is the effort in person-months, NAP is the number of application points and
PROD is the productivity.

Early design model
» Estimates can be made after the requirements have been agreed.
» Based on a standard formula for algorithmic models
« PM=A " Size® M where
« M=PERS "RCPX "RUSE ' PDIF ' PREX " FCIL " SCED;
* A =2.94 in initial calibration, Size in KLOC, B varies from 1.1 to 1.24 depending on
novelty of the project, development flexibility, risk management approaches and the
process maturity.

Multipliers
» Multipliers reflect the capability of the developers, the non-functional requirements, the
familiarity with the development platform, etc.
* RCPX - product reliability and complexity;

Software Engineering

* RUSE - the reuse required;

* PDIF - platform difficulty;

+ PREX - personnel experience;

* PERS - personnel capability;

* SCED - required schedule;

* FCIL - the team support facilities.

The reuse model
» Takes into account black-box code that is reused without change and code that has to be
adapted to integrate it with new code.
» There are two versions:
» Black-box reuse where code is not modified. An effort estimate (PM) is computed.
* White-box reuse where code is modified. A size estimate equivalent to the number of
lines of new source code i1s computed. This then adjusts the size estimate for new
code.

Reuse model estimates
» For generated code:
+ PM=(ASLOC * AT/100)/ATPROD
* ASLOC is the number of lines of generated code
» AT is the percentage of code automatically generated.
+ ATPROD is the productivity of engineers in integrating this code.
* When code has to be understood and integrated:
« ESLOC = ASLOC * (1-AT/100) * AAM.
* ASLOC and AT as before.
* AAM is the adaptation adjustment multiplier computed from the costs of changing
the reused code, the costs of understanding how to integrate the code and the costs of
reuse decision making.

Post-architecture level
» Uses the same formula as the early design model but with 17 rather than 7 associated
multipliers.
» The code size is estimated as:
* Number of lines of new code to be developed;
+ Estimate of equivalent number of lines of new code computed using the reuse model;
* An estimate of the number of lines of code that have to be modified according to
requirements changes.
The exponent term
» This depends on 5 scale factors (see next slide). Their sum/100 is added to 1.01
* A company takes on a project in a new domain. The client has not defined the process to be
used and has not allowed time for risk analysis. The company has a CMM level 2 rating.
* Precedenteness - new project (4)
* Development flexibility - no client involvement - Very high (1)
* Architecture/risk resolution - No risk analysis - V. Low .(5)
* Team cohesion - new team - nominal (3)
* Process maturity - some control - nominal (3)

Software Engineering

e Scale factor is therefore 1.17.

Multipliers
* Product attributes
* Concerned with required characteristics of the software product being developed.
» Computer attributes
* Constraints imposed on the software by the hardware platform.
» Personnel attributes
* Multipliers that take the experience and capabilities of the people working on the
project into account.
» Project attributes
* Concerned with the particular characteristics of the software development project.

Delphi method

The Delphi method is a systematic, interactive forecasting method which relies on a panel
of experts. The experts answer questionnaires in two or more rounds. After each round, a
facilitator provides an anonymous summary of the experts® forecasts from the previous round as
well as the reasons they provided for their judgments. Thus, experts are encouraged to revise
their earlier answers in light of the replies of other members of their panel. It is believed that
during this process the range of the answers will decrease and the group will converge towards
the "correct" answer. Finally, the process is stopped after a pre-defined stop criterion (e.g.
number of rounds, achievement of consensus, stability of results) and the mean or median scores
of the final rounds determine the results.

Start Problem Select panel members based
definition on the expertise required
Analyse questionnaire Prepare and distribute
responses questionnaire

Has a
CONSEnsUs
been
reached ?

provide requested
information and tabulated
responses — restart from
point 4

Develop
final report

Software Engineering

The Delphi Technique is an essential project management technique that refers to an
information gathering technique in which the opinions of those whose opinions are most
valuable, traditionally industry experts, is solicited, with the ultimate hope and go al of attaining a
consensus. Typically, the polling of these industry experts is done on an anonymous basis, in
hopes of attaining opinions that are unfettered by fears or identifiability. The experts are
presented with a series of questions in regards to the project, which is typically, but not always,
presented to the expert by a third-party facilitator, in hopes of eliciting new ideas regarding
specific project points. The responses from all experts are typically combined in the form of an
overall summary, which is then provided to the experts for a review and for the opportunity to
make further comments. This process typically results in consensus within a number of rounds,
and this technique typically helps minimize bias, and minimizes the possibility t hat any one
person can have too much influence on the outcomes.

Key characteristics

The following key characteristics of the Delphi method help the participants to focus on
the issues at hand and separate Delphi from other methodologies:
» Structuring of information flow

The initial contributions from the experts are collected in the form of answers to
questionnaires and their comments to these answers. The panel director controls the interactions
among the participants by processing the information and filt ering out irrelevant content. This
avoids the negative effects of face-to-face panel discussions and solves the usual problems of
group dynamics.
* Regular feedback

Participants comment on their own forecasts, the responses of others and on the progress
of the panel as a whole. At any moment they can revise their earlier statements. While in regular
group meetings participants tend to stick to previously stated opinions and often conform too
much to group leader, the Delphi method prevents it.
* Anonymity of the participants

Usually all participants maintain anonymity. Their identity is not revealed even after the
completion of the final report. This stops them from dominating others in the process using their
authority or personality, frees them to some extent from their personal biases, minimizes the
"bandwagon effect" or "halo effect", allows them to freely express their opinions, and
encourages open critique and admitting errors by revising earlier judgments.

The first step is to found a steering committee (if you need one) and a management team
with sufficient capacities for the process. Then expert panels to prepare and formulate the
statements are helpful unless it is decided to let that be done by the management team. The
whole procedure has to be fixed in advance: Do you need panel meetings or do the teams work
virtually. Is the questionnaire an electronic or a paper one? This means, that logistics (from
Internet programming to typing the results from the paper versions) have to be organised. Will
there be follow-up work-shops,interviews, presentations? If yes, these also have to be organised
and pre-pared. Printing of brochures, leaflets, questionnaire, reports have also be considered. The
last organisational point is the interface with the financing organisation if this is different from
the management team.

Software Engineering

Organisation of the Delphi-Process

B G D

ExpartPanals

Guesticnnairos!
fialds

A vy v& vy
EW@% DB DD ons 0 axpons
vy ¥ Vv ¥ YV v 4
PX PP DD DXIPH] PRIPE

=and o exparts
with fesdback

Results Analysis Discussion...

Scheduling

Scheduling Principles

compartmentalization—define distinct tasks
interdependency—indicate task interrelationship
effort validation—be sure resources are available
defined responsibilities—people must be assigned
defined outcomes—each task must have an output
defined milestones—review for quality

Effort and Delivery Time

Effort
! E.=m (tg*/ta")
]
Im possibl e ! E, = effort in person-m onths
. 1
region : tq = nominal delivery tim e for schedul e

: to = optim al devel opment time (in term s of cost)
X ta = actual delivery time desired

Eq .
]
]
]

E I
. |

tq to devel opment tim e
Tmin= 0.75T 4

Empirical Relationship: P vs E
Given Putnam‘s Software Equation (5-3),

E=L/(Pt"

Software Engineering

Consider a project estimated at 33 KLOC, 12 person-years of effort, with a P of 10K, the
completion time would be 1.3 years

If deadline can be extended to 1.75 years,
E=L"/(P’t*) ~ 3.8 p-years vs 12 p-years

Timeline Charts

Work tasks week 1 week 2 week 3 week 4 week 5§

111 Identify need and benefits
Meet with customers
Identify needs and project constraints
Establish product statement
Miesione: product statement defmed
112 Define desied oulputicontrolinput (OCI)
Scope key boand functions

R

———1
Scope voice input functions ——
Scope modes of interaction [—
Scope document diagnostics | —
Scope other WP functions —/—1
Document OCI —
FTR: Review OCI with customer —
Revise OCl as requied;
Miestone,; OCI defmed
113 Define the functionality fbehavior
Diefine key board functions
Defme voice mput functions
Decribe modes of mteraction
Decnbe speligrammar check
Decribe other WP functions
FTR: Review OCl def nition with customer
Revise as required
Miestone: OG defidtifion conplefe
11.4 Isolate sof tware elements
Miesione: Soffware elemenis defined
1.1.5 Research availabilily of existing sof tware
Reseach text editiong components
Research voice input components
R h file comp
R h Spell check
Miesione: Rewsable components iderdified
116 Define technical feasibilty
Evaluate voice mput
Evaluate grammar checking
Miestone: Technical feasibility assessed
Make quick estimate of size
Create a Scope Def mition
Review scope documnent with customer —
Revise document as required
Miestone: Scope document complete

v D’

[

0

I |:|L| ol

Effort Allocation
e -front endll activities

* customer communication

* analysis

* design

* review and modification
* construction activities

* coding or code generation
» testing and installation

* unit, integration

* white-box, black box

* regression

Defining Task Sets
= determine type of project

* concept development, new application development, application enhancement,
application maintenance, and reengineering projects

Software Engineering

= assess the degree of rigor required
= identify adaptation criteria
= select appropriate software engineering tasks

Earned Value Analysis
» Earned value
* is a measure of progress
» cnables us to assess the -percent of completenessll of a project using quantitative
analysis rather than rely on a gut feeling
* -provides accurate and reliable readings of performance from as early as 15 percent
into the project. Il

Computing Earned Value

Budgeted cost of work scheduled (BCWS)

» The budgeted cost of work scheduled (BCWS) is determined for each work task represented
in the schedule.

* BCWS; is the effort planned for work task i.

» To determine progress at a given point along the project schedule, the value of BCWS
is the sum of the BCWS; values for all work tasks that should have been completed
by that point in time on the project schedule.

» The BCWS values for all work tasks are summed to derive the budget at completion, BAC.
Hence,
. BAC =) (BCWSy) for all tasks k&

Budgeted cost of work performed (BCWP)

» Next, the value for budgeted cost of work performed (BCWP) is computed.

* The value for BCWP is the sum of the BCWS values for all work tasks that have
actually been completed by a point in time on the project schedule.

» -the distinction between the BCWS and the BCWP is that the former represents the budget of
the activities that were planned to be completed and the latter represents the budget of the
activities that actually were completed. Il

* Given values for BCWS, BAC, and BCWP, important progress indicators can be computed:

= Schedule performance index, SPI = BCWP/BCWS

= Schedule variance, SV = BCWP - BCWS

= SPI is an indication of the efficiency with which the project is utilizing
scheduled resources.

Actual cost of work performed, ACWP

» Percent scheduled for completion = BCWS/BAC
« provides an indication of the percentage of work that should have been completed by
time ¢.
» Percent complete = BCWP/BAC
» provides a quantitative indication of the percent of completeness of the project at a
given point in time, 7.

Software Engineering

* Actual cost of work performed, ACWP, is the sum of the effort actually expended on work
tasks that have been completed by a point in time on the project schedule. It is then possible
to compute

= Cost performance index, CP1= BCWP/ACWP
= (Cost variance, CV = BCWP — ACWP

Problem

* Assume you are a software project manager and that you‘ve been asked to computer earned
value statistics for a small software project. The project has 56 planned work tasks that are
estimated to require 582 person-days to complete. At the time that you‘ve been asked to do
the earned value analysis, 12 tasks have been completed. However, the project schedu le
indicates that 15 tasks should have been completed. The following scheduling data (in
person-days) are available:

« Task Planned Effort Actual Effort

e 1 12 12.5
e 2 15 11

- 3 13 17
- 4 8 9.5
5 9.5 9.0
e 6 18 19
- 7 10 10
- 8 4 4.5
- 9 12 10
- 10 6 6.5
« 11 5 4

e 12 14 14.5
- 13 16

- 14 6

- 15 8

Error Tracking
» Schedule Tracking
» conduct periodic project status meetings in which each team member reports progress
and problems.
» evaluate the results of all reviews conducted throughout the software engineering
process.
* determine whether formal project milestones (diamonds in previous slide) have been
accomplished by the scheduled date.
* compare actual start-date to planned start-date for each project task listed in the
resource table
* meet informally with practitioners to obtain their subjective assessment of progress to
date and problems on the horizon.
» use earned value analysis to assess progress quantitatively.
» Progress on an OO Project-I

Software Engineering

Technical milestone: OO analysis completed
* All classes and the class hierarchy have been defined and reviewed.
* Class attributes and operations associated with a class have been defined and
reviewed.
» Class relationships (Chapter 8) have been established and reviewed.
* A behavioral model (Chapter 8) has been created and reviewed.
* Reusable classes have been noted.
Technical milestone: OO design completed
* The set of subsystems (Chapter 9) has been defined and reviewed.
» Classes are allocated to subsystems and reviewed.
» Task allocation has been established and reviewed.
* Responsibilities and collaborations (Chapter 9) have been identified.
» Attributes and operations have been designed and reviewed.
* The communication model has been created and reviewed.
Progress on an OO Project-II
Technical milestone: OO programming completed
» Each new class has been implemented in code from the design model.
» Extracted classes (from a reuse library) have been implemented.
* Prototype or increment has been built.
Technical milestone: OO testing
* The correctness and completeness of OO analysis and design models has been

reviewed.

* A class-responsibility-collaboration network (Chapter 8) has been developed and
reviewed.

» Test cases are designed and class-level tests (Chapter 14) have been conducted for
each class.

» Test cases are designed and cluster testing (Chapter 14) is completed and the classes
are integrated.
» System level tests have been completed.

Software Configuration Management
Configuration management is all about change control.
Every software engineer has to be concerned with how changes made to work products are
tracked and propagated throughout a project.
To ensure quality is maintained the change process must be audited.

programs documents

Software Engineering

Software Configuration categories
» Computer programs

— source

— executable
» Documentation

— Technical /user

* Data

— contained within the program

— external data (e.g. files and databases)
Elements of SCM

» Component element
- Tools coupled with file management
* Process element
-Procedures define change management
» Construction element
-Automate construction of software
e Human elements
-Give guidance for activities and process features

Baselines

» A work product becomes a baseline only after it is reviewed and approved.

» Before baseline — changes informal

* Once a baseline is established each change request must be evaluated and verified before it is
processed.

Software Engineering

Software Configuration Items
« SCI
* Document
» Test cases
e Program component
= Editors, compilers, browsers
— Used to produce documentation.

N —

7 thware models
\ ~N

Configuration Management process
» Identification

+ tracking changes to multiple SCI versions
e Version control

» controlling changes before and after customer release
» Change control

+ authority to approve and prioritize changes
» Configuration auditing

+ ensure changes are made properly
» Reporting

+ tell others about changes made

Program evolution dynamics
e Program evolution dynamics is the study of the processes of system change.

» After major empirical studies, Lehman and Belady proposed that there were a number of
_laws® which applied to all systems as they evolved.

e There are sensible observations rather than laws. They are applicable to large systems
developed by large organisations. Perhaps less applicable in other cases.

Importance of evolution

» Organizations have huge investments in their software systems - they are critical business
assets.

» To maintain the value of these assets to the business, they must be changed and updated.

e The majority of the software budget in large companies is devoted to evolving existing
software rather than developing new software.

Software change
Software change is inevitable

* New requirements emerge when the software is used;

* The business environment changes;

* Errors must be repaired;

* New computers and equipment is added to the system,;

* The performance or reliability of the system may have to be improved.

A key problem for organisations is implementing and managing change to their existing

software systems.

Lehman’s laws

Software Engineering

Law

Description

Continuing change

A program that is used in a real-world environment
necessarily must change or become progressively less
useful in that environment.

Increasing complexity

As an evolving program changes, its structure tends to
become more complex. Extra resources must be devoted to
preserving and simplifying the structure.

Large program
evolution

Program evolution is a self-regulating process. System
attributes such as size, time between releases and the
number of reported errors is approximately invariant for
each system release.

Organisational stability

Over a program‘s lifetime, its rate of development is
approximately constant and independent of the resources
devoted to system development.

Conservation of
familiarity

Over the lifetime of a system, the incremental change in
each release is approximately constant.

Continuing growth

The functionality offered by systems has to continually
increase to maintain user satisfaction.

Declining quality The quality of systems will appear to be declining unless
they are adapted to changes in their operational
environment.

Feedback system Evolution processes incorporate multi-agent, multi-loop

feedback systems and you have to treat them as feedback
systems to achieve significant product improvement.

Applicability of Lehman’s laws

Lehman‘s laws seem to be generally applicable to large, tailored systems developed by large

organisations.

* Confirmed in more recent work by Lehman on the FEAST project (see further
reading on book website).

It is not clear how they should be modified for

* Shrink-wrapped software products;
* Systems that incorporate a significant number of COTS components;

Software Engineering

* Small organisations;
* Medium sized systems.

Software maintenance

* Modifying a program after it has been put into use or delivered.

» Maintenance does not normally involve major changes to the system‘s architecture.

» Changes are implemented by modifying existing components and adding new components to
the system.

» Maintenance is inevitable

» The system requirements are likely to change while the system is being developed because
the environment is changing. Therefore a delivered system won't meet its requirements!

» Systems are tightly coupled with their environment. When a system is installed in an
environment it changes that environment and therefore changes the system requirements.

» Systems MUST be maintained therefore if they
are to remain useful in an environment.

Types of maintenance
* Maintenance to repair software faults
* Code ,design and requirement errors
* Code & design cheap. Requirements most expensive.
» Maintenance to adapt software to a different operating environment
+ Changing a system‘s hardware and other support so that it operates in a different
environment (computer, OS, etc.) from its initial implementation.
* Maintenance to add to or modify the system‘s functionality
* Modifying the system to satisfy new requirements for org or business change.

Distribution of maintenance effort

Functonality
addition or

modification
FES0
.‘63,0‘.

Maintenance costs
» Usually greater than development costs (2* to 100* depending on the application).

Software Engineering

» Affected by both technical and non-technical factors.

» Increases as software is maintained. Maintenance corrupts the software structure so makes
further maintenance more difficult.

» Ageing software can have high support costs
(e.g. old languages, compilers etc.).

Development/maintenance costs

Syulesm 1
Syuloam 2
I T T T 1 T 1 T T T 1 "$
a 50 100 150 200 250 300 350 400 450 sp0
.]DE?EIMM I:Iﬂuemﬁ

Maintenance cost factors
* Team stability

* Maintenance costs are reduced if the same staff are involved with them for some
time.

» Contractual responsibility
* The developers of a system may have no contractual responsibility for

maintenance so there is no incentive to design for future change.
» Staff skills

* Maintenance staff are often inexperienced and have limited domain knowledge.
* Program age and structure

* As programs age, their structure is degraded and they become harder to
understand and change.

Maintenance prediction
» Maintenance prediction is concerned with assessing which parts of the system may cause
problems and have high maintenance costs

* Change acceptance depends on the maintainability of the components affected by
the change;

* Implementing changes degrades the system structure and reduces its
maintainability;

* Maintenance costs depend on the number of changes and costs of change depend
on maintainability.

Change prediction

» Predicting the number of changes requires and understanding of the relationships between a
system and its environment.

» Tightly coupled systems require changes whenever the environment is changed.

Software Engineering

» Factors influencing this relationship are
* Number and complexity of system interfaces;
* Number of inherently volatile system requirements;
* The business processes where the system is used.

What par = of the system
will'be he roetapaehe
o mzintainT

VWhipr coftessemEe
od Hatyrinbe ddedby
change raquestsT

Bradicting
maintsinability

Ahat will ba the liEtims
——— meinteneance costs of thiz

Bradicting
MEintenEnce

srstem T

What will be the costs of

Hoew many chengs maintzining this system
requests can ba over the nawt year?
expectadT

Complexity metrics
* Predictions of maintainability can be made by assessing the complexity of system
components.
» Studies have shown that most maintenance effort is spent on a relatively small number of
system components of complex system.
* Reduce maintenance cost — replace complex components with simple alternatives.
» Complexity depends on
* Complexity of control structures;
» Complexity of data structures;
* Object, method (procedure) and module size.

Process metrics
» Process measurements may be used to assess maintainability
* Number of requests for corrective maintenance;
* Average time required for impact analysis;
» Average time taken to implement a change request;
* Number of outstanding change requests.
» Ifany or all of these is increasing, this may indicate a decline in maintainability.
» COCOMO2 model maintenance = understand existing code + develop new code.

Project management
Objectives
» To explain the main tasks undertaken by project managers
» To introduce software project management and to describe its distinctive characteristics
» To discuss project planning and the planning process

Software Engineering

* To show how graphical schedule representations are used by project management

 To discuss the notion of risks and the risk management process Software project
management

» Concerned with activities involved in ensuring that software is delivered on time and on
schedule and in accordance with the requirements of the organisations develoing
and procuring the software.

» Project management is needed because software development is always subject to budget
and schedule constraints that are set by the organisation developing the software.

Project planning
* Probably the most time-consuming project management activity.
e Continuous activity from initial concept through to system delivery. Plans must be
regularly revised as new information becomes available.
» Various different types of plan may be developed to support the main software project
plan that is concerned with schedule and budget.

Types of project plan
Plan Description

Quality plan Describes the quality procedures and standards that
will be used in a project.

Validation plan Describes the approach, resources and schedule used
for system validation.

Configuration management Describes the configuration management procedures

Plan and structures to be used.

Maintenance plan Predicts the maintenance requirements of the system,
maintenance costs and effort required.

Development plan. Describes how the skills and experience of the project
team members will be developed.

Project planning process
Establish the project constraints(delivery date, staff, budget)
Make initial assessments of the project parameters (structure, size)
Define project milestones and deliverables
while project has not been completed or cancelled loop
Draw up project schedule
Initiate activities according to schedule
Wait (for a while)
Review project progress
Revise estimates of project parameters
Update the project schedule
Re-negotiate project constraints and deliverables
if (problems arise) then
Initiate technical review and possible revision
end if
end loop

Software Engineering

project plan
The project plan sets out:
+ resources available to the project
* work breakdown
* schedule for the work.

Project plan structure
» Introduction — objective, budget, time
» Project organisation. — roles of people
» Risk analysis. — arising, reduction
e Hardware and software resource requirements.
» Work breakdown. — break project to activity, milestone
* Project schedule. — time, allocation of people
* Monitoring and reporting mechanisms.

Milestones and deliverables
» Milestones are the end-point of a process activity.- report presented to management
» Deliverables are project results delivered to customers.
- milestones need not be deliverables. May be used by project managers. —
not to customers

» The waterfall process allows for the straight forward definition of progress milestones.
Milestones in requirement process

ACTIVITES

Prototy pe ‘ Requir ements
dewlopment A4 _ specification
Feasibility User Evalua tion Architectur al Sy stem
report requirements repor t design requirements

MILEBSTONES

Requirements
analy sis

Feasibility
stud y

Project scheduling
» Split project into tasks and estimate time and resources required to complete each task.
» Organize tasks concurrently to make optimal
use of workforce.

» Minimize task dependencies to avoid delays
caused by one task waiting for another to complete.

» Dependent on project managers intuition and experience.

Software Engineering

The project scheduling process

Identify [dentify activity Fstimate resources [Allocate people " Create project

activities dependencies for activities o activities charts

Software Activity chats
requirements and bar char ts
Scheduling problems

= Estimating the difficulty of problems and hence the cost of developing a solution is hard.
* Productivity is not proportional to the number of people working on a task.

» Adding people to a late project makes it later because of communication overheads.

» The unexpected always happens. Always allow contingency in planning.

Bar charts and activity networks
» Graphical notations used to illustrate the project schedule.
» Show project breakdown into tasks. Tasks should not be too small. They should take
about a week or two.
» Activity charts show task dependencies and the critical path.
= Bar charts show schedule against calendar time.

Task durations and dependencies

Activity Duration (days) Dependencies

T1 8

T2 15

T3 15 T1 (M1)
T4 10

T5 10 T2, T4 (M2)
T6 5 T1, T2 (M3)
T7 20 T1 (M1)
T8 25 T4 (M5)
T9 15 T3, T6 (M4)
T10 15 T5, T7 (M7)
T11 7 T9 (M6)
T12 10 T11 (M8)

Software Engineering

Activity network

15days

14/7 /03

Activity timeline

19/9/03

4/7

11/7 18/7 257 1/8 8/8 15/8 22/8 29/8 59 12/9 19/9

Start

Software Engineering

Staff allocation

4/7 11/7 18/7 25/7 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9
I I

Fred T4

T8 | |Tu

Risk management
» Risk management - identifying risks and drawing up plans to minimise their effect on a
project.
» Arisk is a probability that some adverse circumstance will occur
» Project risks : affect schedule or resources. eg: loss of experienced designer.
* Product risks: affect the quality or performance of the software being developed.
eg: failure of purchased component.
* Business risks : affect organisation developing software. Eg: competitor
introducing new product.

Software risks
Risk Affects Description

Staff turnover Project Experienced staff will leave the project before it
is finished.

Management change Project There will be a change of organisational
management with different priorities.

Hardware unavailability | Project Hardware that is essential for the project will not
be delivered on schedule.

Requirements change Project and product | There will be a larger number of changes to the
requirements than anticipated.

Specification delays Project and product | Specifications of essential interfaces are not
available on schedule

Size underestimate Project and product | The size of the system has been underestimated.

CASE tool under- Product CASE tools which support the project do not

performance perform as anticipated

Technology change Business The underlying technology on which the system
is built is superseded by new technology.

Product competition Business A competitive product is marketed before the
system is completed.

Software Engineering

Risk management process
» Risk identification
* Identify project, product and business risks;
» Risk analysis
» Assess the likelihood and consequences of these risks;
* Risk planning
* Draw up plans to avoid or minimise the effects of the risk;
» Risk monitoring
* Constantly monitor risks & plans for risk mitigation.

Risk management process

;

P

Risk
m onitoring

Risk
identification

. . o . Riskavoidance .
List of potential Prioritised risk . Risk
3 . and contingency
risks list assessment
plans

Risk identification
» Discovering possible risk
» Technology risks.
» People risks.
* Organisational risks.
* Tool risk.
* Requirements risks.
» Estimation risks.

Riskplanning

Risks and risk types

Risk type Possible risks

Technology The database used in the system cannot process as many transactions per
second as expected.

Software components that should be reused contain defects that limit their
functionality.

People It is impossible to recruit staff with the skills required.
Key staff are ill and unavailable at critical times.
Required training for staff is not available.

Organisational | The organisation is restructured so that different management are
responsible for the project.
Organisational financial problems force reductions in the project budget.

Tools The code generated by CASE tools is inefficient.
CASE tools cannot be integrated.

Software Engineering

Requirements | Changes to requirements that require major design rework are proposed.
Customers fail to understand the impact of requirements changes.

Estimation The time required to develop the software is underestimated.
The rate of defect repair is underestimated.
The size of the software is underestimated.

Risk analysis

» Make judgement about probability and seriousness of each identified risk.

» Made by experienced project managers

» Probability may be very low(<10%), low(10-25%), moderate(25-50%), high(50-75%) or

very high(>75%). not precise value. Only range.

» Risk effects might be catastrophic, serious, tolerable or insignificant.

Risk Probability Effects
Organisational financial problems force Low Catastrophic
reductions in the project budget.
It is impossible to recruit staff with the High Catastrophic
skills required for the project.
Key staff are ill at critical times in the Moderate Serious
project.
Software components that should be reused Moderate Serious
contain defects which limit their
functionality.
Changes to requirements that require major Moderate Serious
design rework are proposed.
The organisation is restructured so that High Serious
different management are responsible for
the project.
The database used in the system cannot Moderate Serious
process as many transactions per second as
expected.
The time required to develop the software High Serious
1s underestimated.
CASE tools cannot be integrated. High Tolerable
Customers fail to understand the impact of Moderate Tolerable
requirements changes.
Required training for staff is not available. Moderate Tolerable
The rate of defect repair is underestimated. Moderate Tolerable
The size of the software is underestimated. High Tolerable
The code generated by CASE tools is Moderate Insignificant
inefficient.

Risk planning

» Consider each identified risk and develop a strategy to manage that risk.

e categories

* Avoidance strategies

Software Engineering

* The probability that the risk will arise is reduced;

* Minimisation strategies

* The impact of the risk on the project will be reduced;

» Contingency plans

+ If the risk arises, contingency plans are plans to deal with that risk. eg: financial

problems

Risk management strategies

Risk

Strategy

Organisational financial
problems

Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business.

Recruitment problems

Alert customer of potential difficulties and the
possibility of delays, investigate buying-in
components.

Staff illness

Reorganise team so that there is more overlap of work
and people therefore understand each other‘s jobs.

Defective components

Replace potentially defective components with
bought-in components of known reliability.

Requirements changes

Derive traceability information to assess requirements
change impact, maximise information hiding in the
design.

Organisational restructuring

Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business.

Database performance

Investigate the possibility of buying a higher-
performance database.

Underestimated development
time

Investigate buying in components, investigate use of a
program generator

Risk monitoring

» Assess each identified risks regularly to decide whether or not it is becoming less or more

probable.

» Also assess whether the effects of the risk have changed.
= Cannot be observed directly. Factors affecting will give clues.
» Each key risk should be discussed at management progress meetings & review.

Risk indicators

Risk type Potential indicators
Technology Late delivery of hardware or support software, many
reported technology problems
People Poor staff morale, poor relationships amongst team member,
job availability

Software Engineering

Organisational Organisational gossip, lack of action by senior management
Tools Reluctance by team members to use tools, complaints about
CASE tools, demands for higher-powered workstations
Requirements Many requirements change requests, customer complaints
Estimation Failure to meet agreed schedule, failure to clear reported

defects

