
ADITYA ENGINEERING COLLEGE(A)

Inter-process Communication: Race conditions, Critical Regions,
Mutual exclusion with busy waiting, Sleep and wakeup,
Semaphores, Mutexes, Monitors, Message passing, Classical IPC
Problems - Dining philosophers problem, Readers and writers
problem.

Deadlocks: Resources, Conditions for resource deadlocks, Ostrich
algorithm, Deadlock detection and recovery, Deadlock avoidance,
Deadlock prevention.

Operating Systems

Unit-III

ADITYA ENGINEERING COLLEGE(A)

• Processes frequently need to communicate with other processes. For example, in a shell
pipeline, the output of the first process must be passed to the second process.

INTERPROCESS COMMUNICATION

• How one process can pass information to another?

• Making sure two or more processes do not get in each other’s way

• Poper sequencing when dependencies are present

ADITYA ENGINEERING COLLEGE(A)

INTERPROCESS COMMUNICATION

Race Conditions

In some operating systems, processes that are working together may share some common storage that each one

can read and write. The shared storage may be in main memory (possibly in a kernel data structure) or it may be

a shared file.

Example: print spooler

The print spooler is an executable file that manages the printing process. Management of printing involves

retrieving the location of the correct printer driver, loading that driver, spooling high-level function calls into a

print job, scheduling the print job for printing, and so on.

To see how interprocess communication works in practice, consider below example

(C:\Windows\System32\spool\PRINTERS)

• When a process wants to print a file, it enters the file name in a special spooler directory

• Another process, the printer daemon, periodically checks to see if there are any files to be

printed, and if there are, it prints them and then removes their names from the directory.

ADITYA ENGINEERING COLLEGE(A)

ADITYA ENGINEERING COLLEGE(A)

ADITYA ENGINEERING COLLEGE(A)

Race conditions

• A race condition is an undesirable situation that occurs when a
processes, or threads attempt to access the same resource at
the same time and cause problems in the system.

• Race conditions are considered a common issue for
multithreaded applications.

ADITYA ENGINEERING COLLEGE(A)

Critical Regions

How to avoid race conditions?

❑find some way to prohibit more than one process from reading and
writing the shared data at the same time- “ Mutual Exclusion”.

Mutual Exclusion:if one process is using a shared variable or file, the
other processes will be excluded from doing the same thing.

• The part of the program where the shared memory is accessed is called the
critical region or critical section.

• If we could arrange matters such that no two processes were ever in their
critical regions at the same time, we could avoid races.

The above requirement avoids race conditions, it is not sufficient for having parallel processes

cooperate correctly and efficiently using shared data. We need four conditions to hold to have a

good solution.

ADITYA ENGINEERING COLLEGE(A)

Critical Regions

1. No two processes may be simultaneously inside their critical regions.

2. No assumptions may be made about speeds or the number of CPUs.

3. No process running outside its critical region may block any process.

4. No process should have to wait forever to enter its critical region.

ADITYA ENGINEERING COLLEGE(A)

Mutual Exclusion with Busy Waiting

Disabling Interrupts

• On a single-processor system, the simplest solution is to have each process disable all

interrupts just after entering its critical region and re-enable them just before leaving it.

• This approach is generally unattractive because it is unwise to give user processes the power

to turn off interrupts.

• On the other hand, it is frequently convenient for the kernel itself to disable interrupts
for a few instructions while it is updating variables or especially lists.

• Disabling interrupts is often a useful technique within the operating system itself but is
not appropriate as a general mutual exclusion mechanism for user processes.

ADITYA ENGINEERING COLLEGE(A)

Mutual Exclusion with Busy Waiting

Lock Variables

• It is a software solution.

• Consider having a single, shared (lock) variable, initially 0. When a process wants to enter

its critical region, it first tests the lock. If the lock is 0, the process sets it to 1 and enters the

critical region. If the lock is already 1, the process just waits until it becomes 0. Thus, a 0

means that no process is in its critical region, and a 1 means that some process is in its

critical region.

• Drawback: Suppose that one process reads the lock and sees that it is 0. Before it can

set the lock to 1, another process is scheduled, runs, and sets the lock to 1. When the

first process runs again, it will also set the lock to 1, and two processes will be in their

critical regions at the same time.

ADITYA ENGINEERING COLLEGE(A)

Mutual Exclusion with Busy Waiting
Strict Alternation

The integer variable turn, initially 0, keeps track of whose turn it is to enter the critical

region and examine or update the shared memory. Initially, process 0 inspects turn, finds it

to be 0, and enters its critical region. Process 1 also finds it to be 0 and therefore sits in a

tight loop continually testing turn to see when it becomes 1. Continuously testing a variable

until some value appears is called busy waiting. It should usually be avoided, since it wastes

CPU time. Only when there is a reasonable expectation that the wait will be short is busy

waiting used. A lock that uses busy waiting is called a spin lock.

ADITYA ENGINEERING COLLEGE(A)

Mutual Exclusion with Busy Waiting
Peterson’s Solution

• It is a software based solution.
Peterson’s solution requires the two processes to share two
data items:

int turn;
boolean flag[2];

• The variable turn indicates whose turn it is to enter its critical section. That is,
if turn == i, then process Pi is allowed to execute in its critical section. The
flag array is used to indicate if a process is ready to enter its critical section.
For example, if flag[i] is true, this value indicates that Pi is ready to enter
its critical section.
• To enter the critical section, process Pi first sets flag[i] to be true and
then sets turn to the value j, thereby asserting that if the other process wishes
to enter the critical section, it can do so. If both processes try to enter at the same
time, turn will be set to both i and j at roughly the same time. Only one of these
assignments will last; the other will occur but will be overwritten immediately.
The eventual value of turn determines which of the two processes is allowed
to enter its critical section first.

ADITYA ENGINEERING COLLEGE(A)

Sleep and Wakeup

• Peterson’s solution is correct, but it has the defect of requiring busy waiting.

• when a process wants to enter its critical region, it checks to see if the entry is allowed. If it is
not, the process just sits in a tight loop waiting until it is.

• This approach waste CPU time, but it can also have unexpected effects.

• some interprocess communication primitives that block instead of wasting CPU time when
they are not allowed to enter their critical regions. One of the simplest is the pair sleep and
wakeup.

• Sleep is a system call that causes the caller to block, that is, be suspended until another process
wakes it up.

• The wakeup call has one parameter, the process to be awakened.

• Alternatively, both sleep and wakeup each have one parameter, a memory address used to
match up sleeps with wakeups.

ADITYA ENGINEERING COLLEGE(A)

Producer-Consumer problem
• The Producer-Consumer problem is a classical multi-process synchronization problem, that is

we are trying to achieve synchronization between more than one process.

• There is one Producer in the producer-consumer problem, Producer is producing some items,
whereas there is one Consumer that is consuming the items produced by the Producer. The
same memory buffer is shared by both producers and consumers which is of fixed-size.

• The task of the Producer is to produce the item, put it into the memory buffer, and again start
producing items. Whereas the task of the Consumer is to consume the item from the memory
buffer.

•The producer should produce data only when the buffer is not full. In case it is found that the
buffer is full, the producer is not allowed to store any data into the memory buffer.
•Data can only be consumed by the consumer if and only if the memory buffer is not empty. In
case it is found that the buffer is empty, the consumer is not allowed to use any data from the
memory buffer.
•Accessing memory buffer should not be allowed to producer and consumer at the same time.

ADITYA ENGINEERING COLLEGE(A)

PROGRAMMING FOR PROBLEM SOLVING USING C
A.Lakshmanarao

ADITYA ENGINEERING COLLEGE(A)

Semaphores
• Using an integer variable to count the number of wakeups saved for future use

• A semaphore could have the value 0, indicating that no wakeups were saved, or some

positive value if one or more wakeups were pending.

• Two operations on semaphores: down and up(or wait and signal).

• The down operation on a semaphore checks to see if the value is greater than 0. If so, it

decrements the value (i.e., uses up one stored wakeup) and just continues. If the value is

0, the process is put to sleep without completing the down for the moment.

• The up operation increments the value of the semaphore addressed. If one or more

processes were sleeping on that semaphore, unable to complete an earlier down

operation, one of them is chosen by the system (e.g., at random) and is allowed to

complete its down.

• Thus, after an up on a semaphore with processes sleeping on it, the semaphore will still

be 0, but there will be one fewer process sleeping on it.

ADITYA ENGINEERING COLLEGE(A)

Semaphores
• Semaphore in OS is an integer value that indicates whether the resource required by the

process is available or not. The value of a semaphore is modified by wait() or signal()

operation where the wait() operation decrements the value of semaphore and the signal()

operation increments the value of the semaphore.

• The wait() operation is performed when the process wants to access the resources and

the signal() operation is performed when the process want to release the resources. The

semaphore can be binary semaphore or the counting semaphore.

• Semaphore is a process synchronization tool that prevents race condition that may occur

when multiple cooperative processes try to access the same resources. Two or more

process can synchronise by means of the signal. This means the process, trying to access

the same shared resource can be forced to stop at a specific place until it is signalled to

access the resource.

ADITYA ENGINEERING COLLEGE(A)

Semaphores
• The wait() operation decrements the value of semaphore and if the semaphore value

becomes negative then the process executing wait() would be blocked. The signal()

operation increments the value of semaphore and if the semaphore value is less than or

equal to 0 then a process blocked by wait() is unblocked.

• The wait() and signal() operation must be performed indivisibly i.e. if a process is

modifying the semaphore value no other process must simultaneously modify the

semaphore value. Along with that the execution of wait() and signal() must not be

interrupted in between.

ADITYA ENGINEERING COLLEGE(A)

Implementation of Semaphore
• Any processes that want to access the shared resources have to first execute the entry

section where the wait() operation decrements the value of the semaphore. If the value

of the semaphore is 0 that means all the resources are in use and now onwards the

processes trying to execute the entry section would be blocked.

ADITYA ENGINEERING COLLEGE(A)

CountingSemaphore

The counting semaphores controls access to resources that have finite instances. Therefore the value of

counting semaphore is not restricted to a certain domain.

BinarySemaphores

Binary semaphores are generally used to access the critical section. As we know that only one process

can enter a critical section at a time therefore the value of binary semaphores ranges over 0 to 1.

ADITYA ENGINEERING COLLEGE(A)producer-consumer problem using semaphores

ADITYA ENGINEERING COLLEGE(A)
CONT…

Mutexes

• When the semaphore’s ability to count is not needed, a simplified version of

the semaphore, called a mutex, is sometimes used.

• Mutexes are good only for managing mutual exclusion to some shared resource or
piece of code. They are easy and efficient to implement, which makes them especially
useful in thread packages that are implemented entirely in user space.

• A mutex is a shared variable that can be in one of two states: unlocked or locked.
• 0 meaning unlocked and all other values meaning locked.
• Two procedures are used with mutexes. When a thread (or process) needs access

to a critical region, it calls mutex_lock(acquire()). if the mutex is already locked, the
calling thread is blocked until the thread in the critical region is finished and calls
mutex_unlock(release()).

• We use the mutex lock to protect critical regions and thus prevent race conditions.
• Process must acquire the lock before entering a critical section; it releases the

lock when it exits the critical section.

ADITYA ENGINEERING COLLEGE(A)

ADITYA ENGINEERING COLLEGE(A)
CONT…Monitors

• The monitor is one of the ways to achieve Process synchronization. The monitor is

supported by programming languages to achieve mutual exclusion between processes.

For example Java Synchronized methods. Java provides wait() and notify() constructs.

• It is the collection of condition variables and procedures combined together in a special

kind of module or a package.

• Characteristics of Monitors.

1.Inside the monitors, we can only execute one process at a time.

2.Monitors are the group of procedures, and condition variables that are merged together in

a special type of module.

3. If the process is running outside the monitor, then it cannot access the monitor’s internal

variable. But a process can call the procedures of the monitor.

4. Monitors offer high-level of synchronization

5. Monitors were derived to simplify the complexity of synchronization problems.

6. There is only one process that can be active at a time inside the monitor.

ADITYA ENGINEERING COLLEGE(A)
CONT…

Monitors

Syntax of monitor
Condition Variables
There are two types of operations that we can perform on the
condition variables of the monitor:
1.Wait
2.Signal

Wait Operation
a.wait(): - The process that performs wait operation on the
condition variables are suspended and locate the suspended
process in a block queue of that condition variable.
Signal Operation
a.signal() : - If a signal operation is performed by the process
on the condition variable, then a chance is provided to one of
the blocked processes.

ADITYA ENGINEERING COLLEGE(A)

Advantages
1.Mutual exclusion is automatic in monitors.
2.Monitors are less difficult to implement than semaphores.
3.Monitors may overcome the timing errors that occur when semaphores are used.
4.Monitors are a collection of procedures and condition variables that are combined in a
special type of module.

DisAdvantages

1.Monitors must be implemented into the programming language.
2.The compiler should generate code for them.
3.It gives the compiler the additional burden of knowing what operating system features
is available for controlling access to crucial sections in concurrent processes.

Monitors

ADITYA ENGINEERING COLLEGE(A)

Cooperative and Independent processes
• Processes that executing concurrently in the operating system may be either independent

processes or cooperating processes. Any process that does not share any data with any other
process is independent.

• If a process cannot affect or be affected by the other processes executing in the system then the
process is said to be independent. So any process that does not share any data with any other
process is independent.

• A process is said to be cooperating if it can affect or be affected by the other processes executing in
the system. So it is clear that, any process which shares its data with other processes is a
cooperating process.

• A cooperating process shares data with another.
Advantages of Cooperating Process in Operating System
Information Sharing:Cooperating processes can be used to share information between various processes. It could involve
having access to the same files. A technique is necessary so that the processes may access the files concurrently.
Modularity:Modularity refers to the division of complex tasks into smaller subtasks. Different cooperating processes can
complete these smaller subtasks. As a result, the required tasks are completed more quickly and efficiently.
Computation Speedup:Cooperating processes can be used to accomplish subtasks of a single task simultaneously. It improves
computation speed by allowing the task to be accomplished faster. Although, it is only possible if the system contains several
processing elements.
Convenience:There are multiple tasks that a user requires to perform, such as printing, compiling, editing, etc. It is more
convenient if these activities may be managed through cooperating processes.

ADITYA ENGINEERING COLLEGE(A)
Communication models of cooperative processes
(Inter Process Communication)

Two basic models of inter-process communication are
• shared memory
• message passing

ADITYA ENGINEERING COLLEGE(A)

Shared Memory

• A region of memory that is shared by cooperating
processes is established. Processes can then exchange
information by reading and writing data to the shared
region.

• Processes can then exchange their information by reading and

writing data to the shared region.
• It is easier to implement in a distributed system than

shared memory.
• Once shared memory is initiated, all accesses are treated

as routine memory accesses, and no assistance from the
kernel is required.

ADITYA ENGINEERING COLLEGE(A)

Message Passing
In message-passing systems, processors communicate with one another by

sending and receiving messages over a communication channel.

Message passing provides two operations which are as
follows −
•Send message
•Receive message

send(destination, &message);

receive(source, &message);

• The former call sends a message to a given destination and the

latter one receives a message from a given source (or from ANY,

if the receiver does not care). If no message is available, the

receiver can block until one arrives

ADITYA ENGINEERING COLLEGE(A)

Advantages:
1.Easier to implement.
2.Quite tolerant of high communication latencies.
3.Easier to build massively parallel hardware.
4.It is more tolerant of higher communication latencies.
5.Message passing libraries are faster and give high performance.

Disadvantages of Message Passing Model :
1.Programmer has to do everything.
2.Connection setup takes time that’s why it is slower.
3.Data transfer usually requires cooperative operations which can be difficult to achieve.
4.It is difficult for programmers to develop portable applications using this model because
message-passing implementations commonly comprise a library of subroutines that are embedded
in source code. Here again, the programmer has to do everything on his own.

Message Passing

ADITYA ENGINEERING COLLEGE(A)
CONT…

1.The Dining Philosophers Problem

2.The Readers and Writers Problem

CLASSICAL IPC PROBLEMS

ADITYA ENGINEERING COLLEGE(A)
CONT…

Dining Philosophers Problem

The dining philosophers problem states that there are 5 philosophers
sharing a circular table and they eat and think alternatively. There is a
bowl of rice for each of the philosophers and 5 chopsticks. A philosopher
needs both their right and left chopstick to eat. A hungry philosopher may
only eat if there are both chopsticks available.Otherwise a philosopher
puts down their chopstick and begin thinking again.

ADITYA ENGINEERING COLLEGE(A)

Semaphore Solution to Dining Philosopher

process P[i]
while true do

{ THINK;
PICKUP(CHOPSTICK[i], CHOPSTICK[i+1 mod 5]);
EAT;
PUTDOWN(CHOPSTICK[i], CHOPSTICK[i+1 mod 5])

}

Each philosopher is represented by the following pseudocode:

ADITYA ENGINEERING COLLEGE(A)
CONT…

READERS WRITERS PROBLEM
The readers-writers problem is a classical problem of process
synchronization, it relates to a data set such as a file that is shared
between more than one process at a time.

•If one of the people tries editing the file, no other person should be reading or writing at the same time, otherwise
changes will not be visible to him/her.
•However if some person is reading the file, then others may read it at the same time.
Precisely in OS we call this situation as the readers-writers problem.

The readers-writers problem is used for managing synchronization
among various reader and writer process so that there are no problems
with the data sets, i.e. no inconsistency is generated.

ADITYA ENGINEERING COLLEGE(A)

possibility of reading and writing

READERS WRITERS PROBLEM

ADITYA ENGINEERING COLLEGE(A)

Semaphore Solution to reader writer problem

Three variables are used: mutex, wrt, readcnt

1.semaphore mutex; // semaphore mutex is used to ensure mutual exclusion when readcnt is updated
i.e. when any reader enters or exit from the critical section
2.semaphore wrt; wrt is used by both readers and writers
3.int readcnt; // readcnt tells the number of processes performing read in the critical section, initially 0

Functions for semaphore :
– wait() : decrements the semaphore value.
– signal() : increments the semaphore value.

ADITYA ENGINEERING COLLEGE(A)

Semaphore Solution to reader writer problem
Writer process:

1.Writer requests the entry to critical section.
2.If allowed i.e. wait() gives a true value, it enters and performs
the write. If not allowed, it keeps on waiting.
3.It exits the critical section.

do {
// writer requests for critical section
wait(wrt);

// performs the write

// leaves the critical section
signal(wrt);

} while(true);

ADITYA ENGINEERING COLLEGE(A)

Semaphore Solution to reader writer problem
Reader process:

Reader requests the entry to critical section.
If allowed:
• it increments the count of number of readers inside the critical section. If

this reader is the first reader entering, it locks the wrt semaphore to
restrict the entry of writers if any reader is inside.

• It then, signals mutex as any other reader is allowed to enter while others
are already reading.

• After performing reading, it exits the critical section. When exiting, it
checks if no more reader is inside, it signals the semaphore “wrt” as now,
writer can enter the critical section.

If not allowed, it keeps on waiting.

ADITYA ENGINEERING COLLEGE(A)

Semaphore Solution to reader writer problem
Reader process:

do {

// Reader wants to enter the critical section
wait(mutex);

// The number of readers has now increased by 1
readcnt++;

// there is atleast one reader in the critical section
// this ensure no writer can enter if there is even one reader
// thus we give preference to readers here
if (readcnt==1)

wait(wrt);

// other readers can enter while this current reader is inside
// the critical section
signal(mutex);

// current reader performs reading here
wait(mutex); // a reader wants to leave

readcnt--;

// that is, no reader is left in the critical section,
if (readcnt == 0)

signal(wrt); // writers can enter

signal(mutex); // reader leaves

} while(true);

ADITYA ENGINEERING COLLEGE(A)

Deadlock
A process in operating system uses resources in the following way.
1) Requests a resource
2) Use the resource
3) Releases the resource

Deadlock is a situation where a set of
processes are blocked because each
process is holding a resource and
waiting for another resource acquired
by some other process.

ADITYA ENGINEERING COLLEGE(A)

Traffic Deadlock

ADITYA ENGINEERING COLLEGE(A)

Deadlock

Consider an example when two trains are coming
toward each other on the same track and there is
only one track, none of the trains can move once
they are in front of each other. A similar situation
occurs in operating systems when there are two or
more processes that hold some resources and wait
for resources held by other(s). For example, in the
diagram, Process 1 is holding Resource 1 and
waiting for resource 2 which is acquired by process
2, and process 2 is waiting for resource 1.

ADITYA ENGINEERING COLLEGE(A)

Deadlock

Let us assume that there are three processes P1,
P2 and P3. There are three different resources R1,
R2 and R3. R1 is assigned to P1, R2 is assigned to
P2 and R3 is assigned to P3.
After some time, P1 demands for R1 which is being
used by P2. P1 halts its execution since it can't
complete without R2. P2 also demands for R3
which is being used by P3. P2 also stops its
execution because it can't continue without R3. P3
also demands for R1 which is being used by P1
therefore P3 also stops its execution.

ADITYA ENGINEERING COLLEGE(A)

Necessary conditions for Deadlocks

Mutual Exclusion
A resource can only be shared in mutually exclusive manner. It implies, if two
process cannot use the same resource at the same time.
Hold and Wait
A process waits for some resources while holding another resource at the same
time.
No preemption
The process which once scheduled will be executed till the completion. No
other process can be scheduled by the scheduler meanwhile.
Circular Wait
All the processes must be waiting for the resources in a cyclic manner so that
the last process is waiting for the resource which is being held by the first
process.

Deadlock can arise if the following four conditions hold simultaneously

ADITYA ENGINEERING COLLEGE(A)
Methods for handling deadlock

1.Deadlock Ignorance(OSTRICH ALGORITHM)

Deadlock Ignorance is the most widely used approach among all the mechanism. This is
being used by many operating systems mainly for end user uses. In this approach, the
Operating system assumes that deadlock never occurs. It simply ignores deadlock. This
approach is best suitable for a single end user system where User uses the system only for
browsing and all other normal stuff.
2.Deadlock prevention

There are 4 ways to handle deadlock

Deadlock happens only when Mutual Exclusion, hold and wait, No preemption and
circular wait holds simultaneously. If it is possible to violate one of the four conditions at
any time then the deadlock can never occur in the system. The idea behind the approach
is very simple that we have to fail one of the four conditions but there can be a big
argument on its physical implementation in the system.

ADITYA ENGINEERING COLLEGE(A)
Methods for handling deadlock

3.Deadlock avoidance
In deadlock avoidance, the operating system checks whether the system is in safe state or in
unsafe state at every step which the operating system performs. The process continues until
the system is in safe state. Once the system moves to unsafe state, the OS has to backtrack
one step.In simple words, The OS reviews each allocation so that the allocation doesn't cause
the deadlock in the system.

There are 4 ways to handle deadlock

4.Deadlock detection and recovery
This approach let the processes fall in deadlock and then periodically check whether
deadlock occur in the system or not. If it occurs then it applies some of the recovery
methods to the system to get rid of deadlock.

ADITYA ENGINEERING COLLEGE(A)

Deadlock Avoidance

• Simplest and most useful model requires that each process
declare the maximum number of resources of each type
that it may need

• The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition

• Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes

Requires that the system has some additional a priori information

available

ADITYA ENGINEERING COLLEGE(A)
Safe State

• When a process requests an available resource,
system must decide if immediate allocation leaves
the system in a safe state

• System is in safe state if there exists a sequence
<P1, P2, …, Pn> of ALL the processes in the systems
such that for each Pi, the resources that Pi can still
request can be satisfied by currently available
resources + resources held by all the Pj, with j < I

• That is:
• If Pi resource needs are not immediately available, then

Pi can wait until all Pj have finished
• When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate
• When Pi terminates, Pi +1 can obtain its needed

resources, and so on

ADITYA ENGINEERING COLLEGE(A)
Basic Facts

• If a system is in safe state  no deadlocks

• If a system is in unsafe state  possibility
of deadlock

• Avoidance  ensure that a system will
never enter an unsafe state.

ADITYA ENGINEERING COLLEGE(A)
Safe, Unsafe, Deadlock State

ADITYA ENGINEERING COLLEGE(A)
Avoidance Algorithms

• Single instance of a resource type
• Use a resource-allocation graph

• Multiple instances of a resource type
• Use the banker’s algorithm

ADITYA ENGINEERING COLLEGE(A)

Resource-Allocation Graph Scheme

• Claim edge Pi→ Rj indicated that process Pj may
request resource Rj; represented by a dashed
line

• Claim edge converts to request edge when a
process requests a resource

• Request edge converted to an assignment edge
when the resource is allocated to the process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Resources must be claimed a priori in the system

ADITYA ENGINEERING COLLEGE(A)

Resource-Allocation Graph

ADITYA ENGINEERING COLLEGE(A)
Unsafe State In Resource-Allocation Graph

ADITYA ENGINEERING COLLEGE(A)
Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a
resource Rj

• The request can be granted only if
converting the request edge to an
assignment edge does not result in
the formation of a cycle in the
resource allocation graph

ADITYA ENGINEERING COLLEGE(A)

Banker’s Algorithm

• Multiple instances

• Each process must a priori claim maximum
use

• When a process requests a resource it may
have to wait

• When a process gets all its resources it
must return them in a finite amount of time

ADITYA ENGINEERING COLLEGE(A)

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k,
there are k instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi
may request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then
Pi is currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may
need k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

ADITYA ENGINEERING COLLEGE(A)
Safety Algorithm

1. Let Work and Finish be vectors of length m
and n, respectively. Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is
in a safe state

ADITYA ENGINEERING COLLEGE(A)
Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti
[j] = k then process Pi wants k instances of resource
type Rj

1.If Requesti  Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2.If Requesti  Available, go to step 3. Otherwise Pi must
wait, since resources are not available

3.Pretend to allocate requested resources to Pi by modifying
the state as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe  the resources are allocated to Pi

If unsafe  Pi must wait, and the old resource-allocation state is
restored

ADITYA ENGINEERING COLLEGE(A)
Example of Banker’s Algorithm

• 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

ADITYA ENGINEERING COLLEGE(A)

Example (Cont.)
• The content of the matrix Need is defined to be Max –

Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4,
P2, P0> satisfies safety criteria

ADITYA ENGINEERING COLLEGE(A)

Example: P1 Request (1,0,2)

• Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1, P3, P4, P0,
P2> satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

	Slide 1: Operating Systems
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Race conditions
	Slide 7: Critical Regions
	Slide 8: Critical Regions
	Slide 9: Mutual Exclusion with Busy Waiting
	Slide 10: Mutual Exclusion with Busy Waiting
	Slide 11: Mutual Exclusion with Busy Waiting
	Slide 12: Mutual Exclusion with Busy Waiting
	Slide 13: Sleep and Wakeup
	Slide 14: Producer-Consumer problem
	Slide 15
	Slide 16: Semaphores
	Slide 17: Semaphores
	Slide 18: Semaphores
	Slide 19: Implementation of Semaphore
	Slide 20
	Slide 21
	Slide 22: Mutexes
	Slide 23
	Slide 24: Monitors
	Slide 25: Monitors
	Slide 26
	Slide 27: Cooperative and Independent processes
	Slide 28: Communication models of cooperative processes (Inter Process Communication)
	Slide 29: Shared Memory
	Slide 30: Message Passing
	Slide 31
	Slide 32: CLASSICAL IPC PROBLEMS
	Slide 33: Dining Philosophers Problem
	Slide 34
	Slide 35: READERS WRITERS PROBLEM
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Deadlock Avoidance
	Slide 49: Safe State
	Slide 50: Basic Facts
	Slide 51: Safe, Unsafe, Deadlock State
	Slide 52: Avoidance Algorithms
	Slide 53: Resource-Allocation Graph Scheme
	Slide 54: Resource-Allocation Graph
	Slide 55: Unsafe State In Resource-Allocation Graph
	Slide 56: Resource-Allocation Graph Algorithm
	Slide 57: Banker’s Algorithm
	Slide 58: Data Structures for the Banker’s Algorithm
	Slide 59: Safety Algorithm
	Slide 60: Resource-Request Algorithm for Process Pi
	Slide 61: Example of Banker’s Algorithm
	Slide 62: Example (Cont.)
	Slide 63: Example: P1 Request (1,0,2)

