UNIT-II

DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE

Differential equation: An equation involving derivatives is called a differential equation. **Ordinary differential equation**: A differential equation involving ordinary derivatives (derivatives of functions of single variable) is called an ordinary differential equation.

Ex:
$$\left(\frac{d^2y}{dx^2}\right)^{\frac{3}{2}} + 2x\frac{dy}{dx} = y^2$$

Partial differential equation: A differential equation involving partial derivatives (derivatives of functions of two or more variables) is called a partial differential equation.

Ex:
$$\frac{\partial^3 z}{\partial x^3} - 5x^2y \left(\frac{\partial z}{\partial y}\right)^2 = 2e^x \left(\frac{\partial z}{\partial x}\right)$$

Order of a differential equation: The order of the highest order derivative involved in a differential equation is called the order of the differential equation.

Ex: The order of the differential equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{3}{2}} + 2x\frac{dy}{dx} = y^2$ is 2.

Degree of a differential equation: The degree of the differential equation is the degree of the highest ordered derivative appearing it, after the equation has been expressed in a form free from fractional powers.

Ex: The order of the differential equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{3}{2}} + 2x\frac{dy}{dx} = y^2$ is 3.

Formation of ordinary differential equation:

By eliminating arbitrary constants from a relation we can form the ordinary differential equation. Working rule for the formation of ordinary differential equation:

- 1. Consider a relation of the form $f(x, y, c_1, c_2, \dots c_n) = 0$ where c_1, c_2, \dots, c_n are n arbitrary constants.
- 2.Differentiate the given relation successively n times.
- 3. With the help of n relations obtained and the given relation eliminate the n arbitrary constants to get

the required differential equation.

Solution of a differential equation: A relation between dependent and independent variables which satisfies a differential equation is called a solution of the differential equation.

Ex: Consider $\frac{dy}{dx} = y$. for this equation $y = e^x$, $y = 3e^x$, $y = \frac{-2}{5}e^x$ are the solutions for all x.

General solution of a differential equation: A solution of a differential equation in which the number of arbitrary constants is equal to order of the differential equation is called general solution of a differential equation.

Ex: $y = ce^x$ is the general solution of the differential equation.

Particular solution of a differential equation: A solution of a differential equation which is obtained by giving particular values for the arbitrary constants in the general soution is called particular solution of the differential equation.

Ex: $y = e^x$, $y = 2e^x$ are the particular solutions of $\frac{dy}{dx} = y$.

Exact differential equation: A differential equation Mdx + Ndy = 0 be a first order and first degree differential equation, Where M and N are real valued functions of x and y. Then the equation Mdx + Ndy = 0 is said to be exact differential equation if there exists a function f(x,y) such that

$$\frac{\partial f}{\partial x} = M, \frac{\partial f}{\partial y} = N$$
 i.e $df = Mdx + Ndy$.

Note: Condition for Exactness is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

Working rule to solve Exact Differential Equation:

Step I: Write the given differential equation in the form Mdx + Ndy = 0.

Step2: Verify the condition for exactness $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. If it is exact go to next step.

Step3: The general solution is obtained from

$$\int M dx + \int (terms \ of \ N \ not \ containing \ x) dy = c$$

Integrating Factor: A non exact differential equation can be made exact by multiplying with a function of x and y say f(x, y), then f(x, y) is called an integrating factor of that differntial equation.

Ex: $\frac{1}{y^2}$, $\frac{1}{x^2}$, $\frac{1}{xy}$, $\frac{1}{x^2+y^2}$ are all integrating factors of the differential equation ydx - xdy = 0.

Equations reducible to Exact Differential Equations:

Type I: If Mdx + Ndy = 0 is a non exact differential equation, is a homogeneous differential equation and $Mx + Ny \neq 0$, then integrating factor $= \frac{1}{Mx + Ny}$

Type II: If Mdx + Ndy = 0 is a non exact differential equation, is of the form

$$yf(xy)dx + xg(xy)dy = 0$$
 and if $Mx - Ny \neq 0$, then integrating factor= $\frac{1}{Mx - Ny}$

Type III: If Mdx + Ndy = 0 is a non exact differential equation and if $\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = f(x)$, then

Integrating factor = $e^{\int f(x)dx}$.

Type IV: If Mdx + Ndy = 0 is anon exact differential equation and if $\frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] = g(y)$, then Integrating factor $= e^{\int g(y)dy}$.

Type V: If Mdx + Ndy = 0 is a non exact differential equation and an integrating factor can be found by inspection.

Linear differential Equation: A differential equation in which the dependent variable and its derivatives occur only in the first degree and are not multiplied together is called a linear differential equation.

Ex:
$$\frac{dy}{dx} + 7y = x^2$$
, $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - xy = 1$

Linear differential equation of the first order:

Any linear differential equation can be written in the form

- <u>y</u>	If initial differential equation can be written in the form		
$\frac{dy}{dx} + Py = Q$		$\frac{dx}{dy} + Px = Q$	
Where P,Q are functions of x alone		Where P,Q are functions of y alone	
Working rule:		Working rule:	
Step1: Write the differential		Step1: Write the given differential	
equation of the form $\frac{dy}{dx} + Py = Q$	Or	equation in the form $\frac{dx}{dy} + Px = Q$	
Step2 : Find I.F., where I.F= $e^{\int P dx}$		Step2 :Find I.F., where $I.F = e^{\int P dy}$	
Step3 : The general solution is		Step3:The general solution is given by	
given by $y(I.F) = \int Q(I.F) dx.$		$x(I.F) = \int Q(I.F)dy.$	

Differential Equations Reducible to Linear differential Equations of the First order:

Type-I Bernoulli's equation:

Type-1 Bernoum's equation.	
A differential equation of the form	A differential equation of the form
$\frac{dy}{dx} + Py = Qy^n$	$\frac{dx}{dy} + Px = Qx^n$
Where P,Q are functions of x alone and $n \in R$	Where P,Q are functions of y alone and $n \in R$
Is called Bernoulli's differential equation in	Is called Bernoulli's differential equation in x
у	
Working Rule:	Working Rule:
Step1 :Write the differential equation is of	Step1 :Write the differential equation is of the
the form $\frac{dy}{dx} + Py = Qy^n$	form $\frac{dx}{dy} + Px = Qx^n$
Step2 :Divide the equation with y^n and	Step2 :Divide the equation with x^n and
substitute $y^{1-n} = t$ and hence	substitute $x^{1-n} = t$ and hence
$y^{-n}\frac{dy}{dx} = \frac{1}{1-n}\frac{dt}{dx}$	$x^{-n}\frac{dx}{dy} = \frac{1}{1-n}\frac{dt}{dy}$
Step3 :Solve the resulting differential	Step3 :Solve the resulting differential equation
equation, which will be a linear differential	,which will be a linear differential equation in
equation in 't'.	't'.
Step4 : Replace 't' by y^{1-n} in the end to get	Step4 : Replace 't' by x^{1-n} in the end to get
required solution.	required solution.

Type-2

Differential equations of the form	Differential equations of the form
$f'(y)\frac{dy}{dx} + Pf(y) = Q$	$f'(x)\frac{dx}{dy} + Pf(x) = Q$
Where P,Q are functions of 'x' alone.	Where P,Q are functions of 'y' alone.
Working Rule:	Working Rule:
Put f(y)=t and hence $f'(y) \frac{dy}{dx} = \frac{dt}{dx}$.	Put f(x)=t and hence $f'(x) \frac{dx}{dy} = \frac{dt}{dy}$.

Applications of First Order and First Degree Differential Equations: Orthogonal Trajectories:

Def: A curve which cuts every member of a family of curves at right angle is called an orthogonal

trajectory of that family of curves.

If every member of a family (I) of curves cuts at right angles of every member of another family

(II) of curves, then the family (I) is said to be a family of orthogonal trajectories of family (II).Similarly

family (II) is also a orthogonal trajectories of family (I).

Ex: Family of straight lines passing through origin is orthogonal trajectories of the family of circles

at having centre's at origin.

Working Rule to Find Orthogonal Trajectories in Cartesian coordinates:

Step1:Form the differential equation corresponding to the given family of curves.

Step2:Replace $\frac{dy}{dx}$ by $-\frac{dx}{dy}$ in the obtained differential equation.

Step3:Solve the resulting differential equation to get the equation of the family of orthogonal trajectories of the given family of curves.

Working Rule to Find Orthogonal Trajectories in Polar coordinates:

Step1:Form the differential equation corresponding to the given family of curves. **Step2**:Replace $\frac{dr}{d\theta}$ by $-r^2\frac{d\theta}{dr}$ in the obtained differential equation.

Step3: Solve the resulting differential equation to get the equation of the family of orthogonal trajectories of the given family of curves.

Newton's Law of Cooling: The rate of change in temperature of a body is directly proportional to

difference of temparatures of the body and temperature of the surrounding medium.

$$i.e \frac{d\theta}{dt} \propto (\theta - \theta_0)$$
 $\Rightarrow \frac{d\theta}{dt} = -k(\theta - \theta_0)$ ('-' indicates decrease in

temperature)

On solving
$$\Rightarrow \theta = \theta_0 + ce^{-kt}$$

On solving $\Rightarrow \theta = \theta_0 + ce^{-kt}$ Here θ_0 is the temperature of the surrounding medium. θ is the temperature of the body at any time 't'.

Law of natural growth and decay: The rate of change in the amount of substance is directly proportional to the amount of substance present at any time t.

$$i. e \frac{dx}{dt} \propto x \qquad \Rightarrow \frac{dx}{dt} = kx \Rightarrow x = ce^{kt} \quad (Law \ of \ natural \ growth)$$

$$\frac{dx}{dt} \propto x \qquad \Rightarrow \frac{dx}{dt} = -kx \Rightarrow x = ce^{-kt} \quad (Law \ of \ natural \ decay)$$