
P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

UNIT-II

Control Statement

Topic 1: Definite iteration: for Loop

We begin our study of control statements with repetition statements, also known as

loops, which repeat an action. Each repetition of the action is known as a pass or an iteration.

There are two types of loops—those that repeat an action a predefined number of

times (definite iteration) and those that perform the action until the program determines that

it needs to stop (indefinite iteration).

In this section, we examine Python’s for loop, the control statement that most easily

supports definite iteration.

1. Executing a Statement a Given Number of Times:

Here is a for loop that runs the same output statement four times:

>>> for eachPass in range(4):

 print("It's alive!", end = " ")

It's alive! It's alive! It's alive! It's alive!

This loop repeatedly calls one function—the print function. The constant 4 on the first line

tells the loop how many times to call this function. If we want to print 10 or 100

exclamations, we just change the 4 to 10 or to 100. The form of this type of for loop is

for <variable> in range(<an integer expression>):

 <statement-1>

 .

 .

 <statement-n>

2. Count-Controlled Loops:

When Python executes the type of for loop just discussed, it counts from 0 to the value of

the header’s integer expression minus 1. On each pass through the loop, the header’s

variable is bound to the current value of this count. The next code segment demonstrates this

fact:

>>> for count in range(4):

 print(count, end = " ")

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

0 1 2 3

Loops that count through a range of numbers are also called count-controlled loops.

3.Augmented Assignment

Expressions such as x = x + 1 or x = x + 2 occur so frequently in loops that Python

includes abbreviated forms for them. The assignment symbol can be combined with the

arithmetic and concatenation operators to provide augmented assignment operations.

Following are several examples:

a = 17

s = "hi"

a += 3 # Equivalent to a = a + 3

a -= 3 # Equivalent to a = a - 3

a *= 3 # Equivalent to a = a * 3

a /= 3 # Equivalent to a = a / 3

a %= 3 # Equivalent to a = a % 3

s += " there" # Equivalent to s = s + " there

4.Loop Errors: Off-by-One Error

The for loop is not only easy to write but also fairly easy to write correctly. Once we

get the syntax correct, we need to be concerned about only one other possible error: The

loop fails to perform the expected number of iterations. Because this number is typically off

by one, the error is called an off-by-one error.

Count from 1 through 4, we think

>>> for count in range(1,4):

 print(count)

1

2

3

5.Traversing the Contents of a Data Sequence:

Although we have been using the for loop as a simple count-controlled loop, the loop itself

visits each number in a sequence of numbers generated by the range function. The next

code segment shows what these sequences look like:

>>> list(range(4))

[0, 1, 2, 3]

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

>>> list(range(l, 5))

[1, 2, 3, 4]

6. Specifying the Steps in the Range:

A variant of Python’s range function expects a third argument that allows you to nicely skip

some numbers. The third argument specifies a step value, or the interval between the

numbers used in the range, as shown in the

examples that follow:

>>> list(range(1, 6, 1)) # Same as using two arguments

[1, 2, 3, 4, 5]

>>> list(range(1, 6, 2)) # Use every other number

[1, 3, 5]

>>> list(range(1, 6, 3)) # Use every third number

[1, 4]

Topic2:Formatting Text for output

Many data-processing applications require output that has a tabular format, like that

used in spreadsheets or tables of numeric data. In this format, numbers and other

information are aligned in columns that can be either left-justified or right-justified.

 A column of data is left-justified if its values are vertically aligned beginning with

their leftmost characters. A column of data is right-justified if its values are vertically

aligned beginning with their rightmost characters.

To maintain the margins between columns of data, left-justification requires the

addition of spaces to the right of the datum, where as right-justification requires adding

spaces to the left of the datum. A column of data is centered if there are an equal number of

spaces on either side of the data within that column.

The next example, which displays the exponents 7 through 10 and the values of 107

through 1010, shows the format of two columns produced by the print function:

>>> for exponent in range(7, 11):

 print(exponent, 10 ** exponent)

7 10000000

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

8 100000000

9 1000000000

10 10000000000

Python includes a general formatting mechanism that allows the programmer to specify

field widths for different types of data. The next session shows how to right-justify and

left-justify the string "four" within a field width of 6:

>>> "%6s" % "four" # Right justify

' four'

>>> "%-6s" % "four" # Left justify

'four

The first line of code right-justifies the string by padding it with two spaces to its left. The

next line of code left-justifies by placing two spaces to the string’s right.

The simplest form of this operation is the following:

<format string> % <datum>

Topic3: Selection if and if else Statement

The computer must pause to examine or test a condition, which expresses a

hypothesis about the state of its world at that point in time. If the condition is true, the

computer executes the first alternative action and skips the second alternative.

If the condition is false, the computer skips the first alternative action and executes

the second alternative.In other words, instead of moving blindly ahead, the computer

exercises some intelligence by responding to conditions in its environment.

In this section, we explore several types of selection statements, or control

statements, that allow a computer to make choices.

1.The Boolean Type, Comparisons, and Boolean Expressions:

Before you can test conditions in a Python program, you need to understand the

Boolean data type, which is named for the nineteenth century British mathematician George

Boole. The Boolean data type consists of only two data values—true and false.

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

The following session shows some example comparisons and their values:

>>> 4 == 4

True

>>> 4 != 4

False

>>> 4 < 5

True

>>> 4 >= 3

True

>>> "A" < "B"

True

2.if-else Statements:

The if-else statement is the most common type of selection statement. It is also called a two-

way selection statement, because it directs the computer to make a choice between two

alternative courses of action.

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

3.One-Way Selection Statement:

The simplest form of selection is the if statement. This type of control statement is also

called a one-way selection statement, because it consists of a condition and just a single

sequence of statements.

4.Multi-Way if Statements

Occasionally, a program is faced with testing several conditions that entail more than two

alternative courses of action. For example, consider the problem of converting numeric

grades to letter grades.

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

5.Logical Operators and Compound Boolean Expressions

Often a course of action must be taken if either of two conditions is true. For example, valid

inputs to a program often lie within a given range of values. Any input above this range

should be rejected with an error message, and any input below this range should be dealt

with in a similar fashion.

EX:

number = int(input("Enter the numeric grade: "))

if number > 100:

 print("Error: grade must be between 100 and 0")

elif number < 0:

 print("Error: grade must be between 100 and 0")

else:

 # The code to compute and print the result goes here

6.Short-Circuit Evaluation

The Python virtual machine sometimes knows the value of a Boolean expression

before it has evaluated all of its operands. For instance, in the expression A and B, if A is

false, then so is the expression, and there is no need to evaluate B.

Likewise, in the expression A or B, if A is true, then so is the expression, and again there is

no need to evaluate B. This approach, in which evaluation stops as soon as possible, is

called short-circuit evaluation.

count = int(input("Enter the count: "))

theSum = int(input("Enter the sum: "))

if count > 0 and theSum // count > 10:

 print("average > 10")

else:

 print("count = 0 or average <= 10")

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

 Topic4: Conditional Iteration :The While Loop

 The program’s input loop accepts these values until the user enters a special value or

sentinel that terminates the input. This type of process is called conditional iteration,

meaning that the process continues to repeat as long as a condition remains true.

 In this section, we explore the use of the while loop to describe conditional iteration.

1.The Structure and Behavior of a while Loop:

 Conditional iteration requires that a condition be tested within the loop to determine

whether the loop should continue. Such a condition is called the loop’s continuation

condition.

 If the continuation condition is false, the loop ends. If the continuation condition is true,

the statements within the loop are executed again.

The while loop is tailor-made for this type of control logic. Here is its syntax:

while <condition>:

 <sequence of statements>

2.Count Control with a while Loop:

You can also use a while loop for a count-controlled loop. The next two code

segments show the same summations with a for loop and a while loop, respectively.

Summation with a for loop

theSum = 0

for count in range(1, 100001):

 theSum += count

print(theSum)

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Summation with a while loop

theSum = 0

count = 1

while count <= 100000:

 theSum += count

 count += 1

print(theSum)

3.The while True Loop and the break Statement

Although the while loop can be complicated to write correctly, it is possible to simplify its

structure and thus improve its readability.Python includes a break statement that will allow

us to make this change in the program. Here is the modified script:

theSum = 0.0

while True:

 data = input("Enter a number or just enter to quit: ")

 if data == "":

 break

 number = float(data)

 theSum += number

print("The sum is", theSum)

3. Random Numbers

Python’s random module supports several ways to do this, but the easiest is to call the

function random.randint with two integer arguments. The function random.randint returns

a random number from among the numbers between the two arguments and including those

numbers. The next session simulates the roll of a die 10 times:

>>> import random

>>> for roll in range(10):

 print(random.randint(1, 6), end = " ")

2 4 6 4 3 2 3 6 2 2

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

4.Loop Logic, Errors, and Testing

You have seen that the while loop is typically a condition-controlled loop, meaning

that its continuation depends on the truth or falsity of a given condition. Because while

loops can be the most complex control statements, to ensure their correct behavior, careful

design and testing are needed.

Strings and Text Files

Topic:5 Accessing Character and Substring in Strings

1.The Structure of Strings

Unlike an integer, which cannot be decomposed into more primitive parts, a string is a data

structure.

A data structure is a compound unit that consists of several other pieces of data. A string is a

sequence of zero or more characters.

Recall that you can mention a Python string using either single quote marks or double quote

marks. Here are some examples:

>>> "Hi there!"

'Hi there!'

>>> ""

''

>>> 'R'

'R'

 Python’s len function returns this value when it is passed a string, as shown in the

following session:

>>> len("Hi there!")

9

>>> len("")

0

The positions of a string’s characters are numbered from 0, on the left, to the length of the

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

string minus 1, on the right. Figure 4-1 illustrates the sequence of characters and their

positions in the string "Hi there!". Note that the ninth and last character, '!', is at position

2.The Subscript Operator

Although a simple for loop can access any of the characters in a string, sometimes you just

want to inspect one character at a given position without visiting them all. The subscript

operator [] makes this possible. The simplest form of the subscript operation is the following:

<a string>[<an integer expression>]

The first part of this operation is the string you want to inspect. The integer expression in

brackets indicates the position of a particular character in that string.

3.Slicing for Substrings

Some applications extract portions of strings called substrings. For example, an

application that sorts filenames according to type might use the last three characters in a

filename, called its extension, to determine the file’s type (exceptions to this rule, such as

the extensions ".py" and ".html", will be considered later in this chapter).

On a Windows file system, a filename ending in ".txt" denotes a human-readable

text file, whereas a filename ending in ".exe" denotes an executable file of machine code.

You can use Python’s subscript operator to obtain a substring through a process

called slicing.

>>> name = "myfile.txt" # The entire string

>>> name[0:]

'myfile.txt'

>>> name[0:1] # The first character

'm'

>>> name[0:2] # The first two characters

'my'

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

>>> name[:len(name)] # The entire string

'myfile.txt'

>>> name[-3:] # The last three characters

'txt'

>>> name[2:6] # Drill to extract 'file'

'file'

Topic:6 Data Encryption

As you might imagine, data traveling on the Internet is vulnerable to spies and

potential thieves. It is easy to observe data crossing a network, particularly now that more

and more communications involve wireless transmissions.

For example, a person can sit in a car in the parking lot outside any major hotel and

pick up transmissions between almost any two computers if that person runs the right

sniffing software.

 For this reason, most applications now use data encryption to protect information

transmitted on networks

Encryption techniques are as old as the practice of sending and receiving messages.

The sender encrypts a message by translating it to a secret code, called a cipher text. At the

other end, the receiver decrypts the cipher text back to its original plaintext form.

A very simple encryption method that has been in use for thousands of years is

called a Caesar cipher. Recall that the character set for text is ordered as a sequence of

distinct values.

Note the wraparound effect for the last three plaintext characters, whose cipher text

characters start at the beginning of the alphabet.

For example, the plaintext character ‘x’ with ASCII 120 maps to the cipher character

‘a’ with ASCII 97, because ASCII 120 is less than 3 characters from the end of the plaintext

sequence.

The next two Python scripts implement Caesar cipher methods for any strings that

contain the lowercase letters of the alphabet and for any distance values between 0 and 2.

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

A more sophisticated encryption scheme is called a block cipher. A block cipher

uses plaintext characters to compute two or more encrypted characters. This is accomplished

by using a mathematical structure known as an invertible matrix to determine the values of

the encrypted characters.

Topic:7 Strings and Number Systems

When you perform arithmetic operations, you use the decimal number system. This

system, also called the base ten number system, uses the ten characters 0, 1, 2, 3, 4, 5, 6, 7, 8,

and 9 as digits.

The binary number system is used to represent all information in a digital computer.

The two digits in this base two number system are 0 and 1. Because binary numbers can be

long strings of 0s and 1s, computer scientists often use other number systems, such as octal

(base eight) and hexadecimal (base 16) as shorthand for these numbers.

To identify the system being used, you attach the base as a subscript to the number.

For example, the following numbers represent the quantity 41510 in the binary, octal,

decimal, and hexadecimal systems:

415 in binary notation 1100111112

415 in octal notation 6378

415 in decimal notation 41510

415 in hexadecimal notation 19F16

The digits used in each system are counted from 0 to n – 1, where n is the system’s

base.

1.The Positional System for Representing Numbers

All of the number systems we have examined use positional notation—that is, the

value of each digit in a number is determined by the digit’s position in the number. In other

words, each digit has a positional value.

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

2. Converting Binary to Decimal:

3.Converting Decimal to Binary

How are integers converted from decimal to binary? One algorithm uses division and

subtraction instead of multiplication and addition. This algorithm repeatedly divides the

decimal number by 2.

4.Octal and Hexadecimal Numbers

The octal system uses a base of eight and the digits 0 . . . 7. Conversions of octal to decimal

and decimal to octal use algorithms similar to those discussed thus far (using powers of 8

and multiplying or dividing by 8, instead of 2). But the real benefit of the octal system is the

ease of converting octal numbers to and from binary.

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Topic: 8 String Methods

Let’s start with counting the words in a single sentence and finding the average word

length. This task requires locating the words in a string. Fortunately, Python includes a set

of string operations called methods that make tasks like this one easy. In the next session,

we use the string method split to obtain a list of the words contained in an input string.

>>> sentence = input("Enter a sentence: ")

Enter a sentence: This sentence has no long words.

>>> listOfWords = sentence.split()

>>> print("There are", len(listOfWords), "words.")

There are 6 words.

>>> sum = 0

>>> for word in listOfWords:

 sum += len(word)

>>> print("The average word length is", sum / len(listOfWords))

The average word length is 4.5

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Ex:

>>> s = "Hi there!"

>>> len(s)

9

>>> s.center(11)

' Hi there! '

>>> s.count('e')

2

>>> s.endswith("there!")

True

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

>>> s.startswith("Hi")

True

>>> s.find("the")

3

>>> s.isalpha()

False

>>> 'abc'.isalpha()

True

>>> "326".isdigit()

True

>>> words = s.split()

>>> words

['Hi', 'there!']

>>> " ".join(words)

'Hithere!'

>>> " ". join(words)

'Hi there!'

>>> s.lower()

'hi there!'

>>> s.upper()

'HI THERE!'

>>> s.replace('i', 'o')

'Ho there!'

>>> " Hi there! ".strip()

'Hi there!'

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Topic: 9 Text Files

Thus far in this book, we have seen examples of programs that have taken input data

from users at the keyboard. Most of these programs can receive their input from text files as

well.

A text file is a software object that stores data on a permanent medium such as a disk,

CD, or flash memory. When compared to keyboard input from a human user, the main

advantages of taking input data from a file are the following:

• The data set can be much larger.

• The data can be input much more quickly and with less chance of error.

• The data can be used repeatedly with the same program or with different programs

1.Text Files and Their Format

Using a text editor such as Notepad or TextEdit, you can create, view, and save data in a

text file (but be careful: some text editors use RTF as a default format for text, so you

should make sure to change this to “Plain text” in your editor’s preferences if that is the

case).

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Accessing and Manipulating Files and Directories on Disk

As you probably know, the file system of a computer allows you to create folders or

directories, within which you can organize files and other directories.

The complete set of directories and files forms a tree-like structure, with a single

root directory at the top and branches down to nested files and subdirectories.

Figure 4-6 shows a portion of a file system,with directories named lambertk, parent,

current, sibling, and child. Each of the last four directories contains a distinct file named

myfile.txt.

P.Murali , Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

