
P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

UNIT-III

 List and Dictionaries

Topic 1: Lists

A list is a sequence of data values called items or elements. An item can be of any type.

Here are some real-world examples of lists:

• A shopping list for the grocery store

• A to-do list

• A roster for an athletic team

• A guest list for a wedding

• A recipe, which is a list of instructions

• A text document, which is a list of lines

• The names in a phone book

The logical structure of a list resembles the structure of a string. Each of the items in a list is

ordered by position.

List Rules:

 insertion order preserved.

 duplicate objects are allowed

 heterogeneous objects are allowed.

 List is dynamic because based on our requirement we can increase the size and decrease

the size.

 In List the elements will be placed within square brackets and with comma separator.

We can differentiate duplicate elements by using index and we can preserve Insertion order by

using index. Hence index will play very important role. Python supports both positive and

negative indexes. +ve index means from left to right where as negative index means right to left.

 List objects are mutable. i.e we can change the content

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

A list can be define as below

1. L1 = ["John", 102, "USA"]

2. L2 = [1, 2, 3, 4, 5, 6]

1. Creation of List Objects:

1. We can create empty list object as follows...

2.If we know elements already then we can create list as follows

 list=[10,20,30,40]

3. With dynamic input:

4.List vs mutability:

Once we creates a List object, we can modify its content. Hence List objects are Mutable.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

2. Accessing elements of List:

We can access elements of the list either by using index or by using slice operator(:)

1. By using index:

List follows zero based index. ie index of first element is zero. List supports both +ve

and -ve indexes.

+ve index meant for Left to Right

-ve index meant for Right to Left

print(list[0]) ==>10

print(list[-1]) ==>40

print(list[10]) ==>IndexError: list index out of range

2. Accessing elements of List:

We can access elements of the list either by using index or by using slice operator(:)

2. By using slice operator:

Syntax:

list2= list1[start:stop:step]

start ==>it indicates the index where slice has to start default value is 0

stop ===>It indicates the index where slice has to end

default value is max allowed index of list ie length of the list step ==>increment value

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

default value is 1.

Important functions of List:

1. To get information about list len(), count(), index()

2. Manipulating elements of List

append(), insert(), extend(), remove(), pop()

3. Ordering elements of List reverse(), sort()

1.len():

returns the number of elements present in the list

Eg: n=[10,20,30,40]

print(len(n))

2. count():

It returns the number of occurrences of specified item in the list

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

3.index():

returns the index of first occurrence of the specified item.

4.append():

We can use append() function to add item at the end of the list.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

5.insert():

To insert item at specified index position .

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

6.extend():

To add all items of one list to another list

l1.extend(l2) - all items present in l2 will be added to l1

7.remove():

We can use this function to remove specified item from the list. If the item present

multiple times then only first occurrence will be removed.

8. pop():

• It removes and returns the last element of the list.

• This is only function which manipulates list and returns some element.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

9.reverse():

We can use to reverse() order of elements of list.

10.sort():

In list by default insertion order is preserved. If want to sort the elements of list according to

default natural sorting order then we should go for sort() method.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

• For numbers ==>default natural sorting order is Ascending Order

• For Strings ==> default natural sorting order is Alphabetical Order

11.clear():

We can use clear() function to remove all elements of List.

Topic 2: Defining Simple Functions of List

1.The Syntax of Simple Function Definitions:

Most of the functions used thus far expect one or more arguments and return a value. Let’s

define a function that expects a number as an argument and returns the square of that

number. First, we consider how the function will be used. Its name is square, so you can

call it like this:

>>> square(2)

4

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

>>> square(6)

36

>>> square(2.5)

6.25

The definition of this function consists of a header and a body. Here is the code:

def square(x):

 """Returns the square of x."""

 return x * x

2.Parameters and Arguments

A parameter is the name used in the function definition for an argument that is passed to

the function when it is called. Some functions expect no arguments, so they are defined with no

parameters.

3.The return Statement

The programmer places a return statement at each exit point of a function when that function

should explicitly return a value. The syntax of the return statement for these cases is

the following:

return <expression>

4.Boolean Functions

A Boolean function usually tests its argument for the presence or absence of some property.

The function returns True if the property is present, or False otherwise. The next example

shows the use and definition of the Boolean function odd, which tests a number to see

whether it is odd.

>>> odd(5)

True

>>> odd(6)

False

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

def odd(x):

 """Returns True if x is odd or False otherwise."""

 if x % 2 == 1:

 return True

 else:

 return False

Note that this function has two possible exit points, in either of the alternatives within the

if/else statement.

5.Defining a main Function

In scripts that include the definitions of several cooperating functions, it is often useful to

define a special function named main that serves as the entry point for the script. This func

def main():

 """The main function for this script."""

 number = float(input("Enter a number: "))

 result = square(number)

 print("The square of", number, "is", result)

def square(x):

 """Returns the square of x."""

 return x * x

The entry point for program execution

if __name__ == "__main:"__

 main()

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Topic:3 Dictionaries

We can use List, Tuple and Set to represent a group of individual objects as a single entity.

• If we want to represent a group of objects as key-value pairs then we should go for Dictionary.

Eg:

rollno----name

phone number--address

ipaddress---domain name

Duplicate keys are not allowed but values can be duplicated.

• Heterogeneous objects are allowed for both key and values.

• insertion order is not preserved

• Dictionaries are mutable

• Dictionaries are dynamic

• indexing and slicing concepts are not applicable

Note: In C++ and Java Dictionaries are known as "Map" where as in Perl and

Ruby it is known as "Hash"

How to create Dictionary?

d={} or d=dict()

we are creating empty dictionary. We can add entries as follows

d[100]="srinu"

d[200]="ravi"

d[300]="shiva"

print(d) #{100: 'srinu', 200: 'ravi', 300: 'shiva'}

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

How to access data from the dictionary?

We can access data by using keys.

d={100:'srinu' ,200:'ravi', 300:'shiva'}

print(d[100]) #srinu

print(d[300]) #shiva

If the specified key is not available then we will get KeyError

print(d[400]) # KeyError: 400

How to update dictionaries?

d[key]=value

If the key is not available then a new entry will be added to the dictionary with

the specified key-value pair

If the key is already available then old value will be replaced with new value.

Adding Keys and Replacing Values

You add a new key/value pair to a dictionary by using the subscript operator []. The form

of this operation is the following:

<a dictionary>[<a key>] = <a value>

The next code segment creates an empty dictionary and adds two new entries:

>>> info = {}

>>> info["name"] = "Sandy"

>>> info["occupation"] = "hacker"

>>> info

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

{'name':'Sandy', 'occupation':'hacker'}

The subscript is also used to replace a value at an existing key, as follows:

>>> info["occupation"] = "manager"

>>> info

{'name':'Sandy', 'occupation':'manager'}

Removing Keys

To delete an entry from a dictionary, one removes its key using the method pop. This method

expects a key and an optional default value as arguments. If the key is in the dictionary, it is

removed, and its associated value is returned. Otherwise, the default value is returned.

>>> print(info.pop("job", None))

None

>>> print(info.pop("occupation"))

manager

>>> info

{'name':'Sandy'}

Traversing a Dictionary

When a for loop is used with a dictionary, the loop’s variable is bound to each key in an

unspecified order. The next code segment prints all of the keys and their values in our info

dictionary:

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

for key in info:

 print(key, info[key])

Alternatively, you could use the dictionary method items() to access the dictionary’s

entries. The next session shows a run of this method with a dictionary of grades:

>>> grades = {90:'A', 80:'B', 70:'C'}

>>> list(grades.items())

[(80,'B'), (90,'A'), (70,'C')]

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Design with Function

Design is important in many fields. The architect who designs a building, the engineer who

designs a bridge or a new automobile, and the politician, advertising executive, or army general

who designs the next campaign must organize the structure of a system and coordinate the actors

within it to achieve its purpose. Design is equally important in constructing software systems,

some of which are the most complex artifacts ever built by human beings. In this chapter, we

explore the use of functions to design software systems.

Topic 4: Functions as Abstraction Mechanisms

The problem is that the human brain can wrap itself around just a few things at once

(psychologists say three things comfortably, and at most seven). People cope with complexity by

developing a mechanism to simplify or hide it. This mechanism is called an abstraction. Put most

plainly, an abstraction hides detail and thus allows a person to view many things as just one

thing.

The problem is that the human brain can wrap itself around just a few things at once

(psychologists say three things comfortably, and at most seven). People cope with complexity by

developing a mechanism to simplify or hide it. This mechanism is called an abstraction. Put most

plainly, an abstraction hides detail and thus allows a person to view many things as just one

thing. We use abstractions to refer to the most common tasks in everyday life.

1.Functions Eliminate Redundancy

The first way that functions serve as abstraction mechanisms is by eliminating redundant, or

repetitious, code. To explore the concept of redundancy, let’s look at a function named

summation, which returns the sum of the numbers within a given range of numbers. Here is the

definition of summation, followed by a session showing its use:

def summation(lower, upper):

 """Arguments: A lower bound and an upper bound

 Returns: the sum of the numbers from lower through

 upper

 """

 result = 0

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

 while lower <= upper:

 result += lower

 lower += 1

 return result

>>> summation(1,4) # The summation of the numbers 1..4

10

>>> summation(50,100) # The summation of the numbers 50..100

3825

2.Functions Hide Complexity

Another way that functions serve as abstraction mechanisms is by hiding complicated details. To

understand why this is true, let’s return to the summation function. Although the idea of

summing a range of numbers is simple, the code for computing a summation is not. We’re not

just talking about the amount or length of the code, but also about the number of interacting

components. There are three variables to manipulate, as well as countcontrolled loop logic to

construct.

3.Functions Support General Methods with Systematic Variations

An algorithm is a general method for solving a class of problems. The individual problems that

make up a class of problems are known as problem instances. The problem instances for our

summation algorithm are the pairs of numbers that specify the lower and upper bounds of the

range of numbers to be summed.

4.Functions Support the Division of Labor

In a well-organized system, whether it is a living thing or something created by humans, each

part does its own job or plays its own role in collaborating to achieve a common goal.

Specialized tasks get divided up and assigned to specialized agents. Some agents might assume

the role of managing the tasks of others or coordinating them in some way. But, regardless of the

task, good agents mind their own business and do not try to do the jobs of others.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Topic 5: Problem Solving with Top-Down Design

One popular design strategy for programs of any significant size and complexity is called top-

down design. This strategy starts with a global view of the entire problem and breaks the

problem into smaller, more manageable sub problems—a process known as problem

decomposition. As each sub problem is isolated, its solution is assigned to a function. Problem

decomposition may continue down to lower levels, because a sub problem might in turn contain

two or more lower-level problems to solve. As functions are developed to solve each sub

problem, the solution to the overall problem is gradually filled out in detail. This process is also

called stepwise refinement.

The Design of the Text-Analysis Program:

The program requires simple input and output components, so these can be expressed as

statements within a main function. However, the processing of the input is complex enough to

decompose into smaller sub processes, such as obtaining the counts of the sentences, words, and

syllables and calculating the readability scores.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

The Design of the Doctor Program

The doctor program processes the input by responding to it as an agent would in a conversation.

Thus, the responsibility for responding is delegated to the reply function. Note that the two

functions main and reply have distinct responsibilities. The job of main is to handle user

interaction with the program, whereas reply is responsible for implementing the “doctor logic” of

generating an appropriate reply. The assignment of roles and responsibilities to different actors

in a program is also called responsibility-driven design.

Topic 6: Design with Recursive Functions

In top-down design, you decompose a complex problem into a set of simpler problems and solve

these with different functions. In some cases, you can decompose a complex problem into

smaller problems of the same form. In these cases, the subproblems can all be solved by using

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

the same function. This design strategy is called recursive design, and the resulting functions are

called recursive functions.

Defining a Recursive Function

A recursive function is a function that calls itself. To prevent a function from repeating itself

indefinitely, it must contain at least one selection statement. This statement examines a condition

called a base case to determine whether to stop or to continue with another recursive step.

Let’s examine how to convert an iterative algorithm to a recursive function. Here is a definition

of a function displayRange that prints the numbers from a lower bound to an upper bound:

def displayRange(lower, upper):

 """Outputs the numbers from lower through upper."""

 while lower <= upper:

 print(lower)

 lower = lower + 1

How would we go about converting this function to a recursive one? First, you should note

two important facts:

1. The loop’s body continues execution while lower <= upper.

2. When the function executes, lower is incremented by 1, but upper never changes.

The equivalent recursive function performs similar primitive operations, but the loop

is replaced with a selection statement, and the assignment statement is replaced with a

recursive call of the function. Here is the code with these changes:

def displayRange(lower, upper):

 """Outputs the numbers from lower through upper."""

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

 if lower <= upper:

 print(lower)

 displayRange(lower + 1, upper)

Using Recursive Definitions to Construct Recursive Functions

Recursive functions are frequently used to design algorithms for computing values that

have a recursive definition. A recursive definition consists of equations that state what

a value is for one or more base cases and one or more recursive cases. For example, the

Fibonacci sequence is a series of values with a recursive definition.

The first and second numbers in the Fibonacci sequence are 1. Thereafter, each number in the

sequence is the sum of its two predecessors, as follows:

1 1 2 3 5 8 13 . . .

More formally, a recursive definition of the nth Fibonacci number is the following:

Fib(n) = 1, when n = 1 or n = 2

Fib(n) = Fib(n - 1) + Fib(n - 2), for all n > 2

Given this definition, you can construct a recursive function that computes and returns the

nth Fibonacci number. Here it is:

def fib(n):

 """Returns the nth Fibonacci number."""

 if n < 3:

 return 1

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

 else:

 return fib(n - 1) + fib(n - 2)

Note that the base case as well as the two recursive steps return values to the caller.

Infinite Recursion: Recursive functions tend to be simpler than the corresponding loops, but

they still require thorough testing. One design error that might trip up a programmer occurs when

the function can (theoretically) continue executing forever, a situation known as infinite

recursion.

Topic 7: Managing a Program’s Namespace

namespace—that is, the set of its variables and their values—is structured and how you can

control it via good design principles.

Module Variables, Parameters, and Temporary Variables

The below program includes many variable names; for the purposes of this example, we will

focus on the code for the variable replacements and the function changePerson

replacements = {"I":"you", "me":"you", "my":"my""your",

 "we":"you", "us":"you", "mine":"yours"}

def changePerson(sentence):

 """Replaces first person pronouns with second person pronouns."""

 words = sentence.split()

 replyWords = []

 for word in words:

 replyWords.append(replacements.get(word, word))

 return " ".join(replyWords)

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

This code appears in the file doctor.py, so its module name is doctor. The names in this

code fall into four categories, depending on where they are introduced:

This code appears in the file doctor.py, so its module name is doctor. The names in this

code fall into four categories, depending on where they are introduced:

1. Module variables. The names replacements and changePerson are introduced at the level of

the module. Although replacements names a dictionary and changePersonnames a function, they

are both considered variables. You can see the module variables of the doctor module by

importing it and entering dir(doctor) at a shell prompt. When module variables are introduced in

a program, they are immediately given a value.

2. Parameters. The name sentence is a parameter of the function changePerson. A parameter

name behaves like a variable and is introduced in a function or method header. The parameter

does not receive a value until the function is called.

3. Temporary variables. The names words, replyWords, and word are introduced in the body of

the function changePerson. Like module variables, temporary variables receive their values as

soon as they are introduced.

4. Method names. The names split and join are introduced or defined in the strtype. As

mentioned earlier, a method reference always uses an object, in this case, a string, followed by a

dot and the method name.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Topic 8: Higher-Order Functions

Like any skill, a designer’s knack for spotting the need for a function is developed with practice.

As you gain experience in writing programs, you will learn to spot common and redundant

patterns in the code. One pattern that occurs again and again is the application of a function to a

set of values to produce some results. Here are some examples:

• The numbers in a text file must be converted to integers or floats after they are input.

• The first-person pronouns in a list of words must be changed to the corresponding

second-person pronouns in the doctor program.

• Only scores above the average are kept in a list of grades.

• The sum of the squares of a list of numbers is computed.

In this section, we learn how to capture these patterns in a new abstraction called a higher-order

function. For these patterns, a higher-order function expects a function and a set of data values as

arguments.

Topic:10 Modules

A Python module is a file containing Python definitions and statements. A module can define

functions, classes, and variables. A module can also include runnable code. Grouping related

code into a module makes the code easier to understand and use. It also makes the code logically

organized.

Example: create a simple module

A simple module, calc.py

 def add(x, y):

 return (x+y)

 def subtract(x, y):

 return (x-y)

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

A module allows you to logically organize your Python code. Grouping related code into a

module makes the code easier to understand and use. A module is a Python object with

arbitrarily named attributes that you can bind and reference.

Topic:11 Python Packages

We usually organize our files in different folders and subfolders based on some criteria, so that

they can be managed easily and efficiently.

For example, we keep all our games in a Games folder and we can even subcategorize according

to the genre of the game or something like this.

The same analogy is followed by the Python package.

Creating Package:

• Let’s create a package named mypckg that will contain two modules mod1 and mod2. To

create this module follow the below steps –

• Create a folder named mypckg.

• Inside this folder create an empty Python file i.e. __init__.py

• Then create two modules mod1 and mod2 in this folder.

Mod1.py

• def gfg():

• print("Welcome to GFG")

Mod2.py

• def sum(a, b):

• return a+b

Understanding __init__.py

• _init__.py helps the Python interpreter to recognise the folder as package.

• It also specifies the resources to be imported from the modules. If the __init__.py is

empty

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

__init__.py

• from .mod1 import gfg

• from .mod2 import sum

• This __init__.py will only allow the gfg and sum functions from the mod1 and mod2

modules to be imported.

Import Modules from a Package

• We can import these modules using the from…import statement and the dot(.) operator.

• Syntax:

Import package_name.module_name

Example: Import Module from package

• We will import the modules from the above created package and will use the functions

inside those modules.

• from mypckg import mod1

• from mypckg import mod2

• mod1.gfg()

• res = mod2.sum(1, 2)

• print(res)

Output:

• Welcome to GFG

• 3

https://www.geeksforgeeks.org/import-module-python/

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Topic:12 Case Study: Gathering Information from a File System

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

