P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

UNIT-11I

List and Dictionaries

Topic 1: Lists

A list is a sequence of data values called items or elements. An item can be of any type.
Here are some real-world examples of lists:

* A shopping list for the grocery store

* A to-do list

* A roster for an athletic team

* A guest list for a wedding

* A recipe, which is a list of instructions

A text document, which is a list of lines

* The names in a phone book

The logical structure of a list resembles the structure of a string. Each of the items in a list is
ordered by position.

List Rules:

e insertion order preserved.

e duplicate objects are allowed

e heterogeneous objects are allowed.

e List is dynamic because based on our requirement we can increase the size and decrease
the size.

e In List the elements will be placed within square brackets and with comma separator.

We can differentiate duplicate elements by using index and we can preserve Insertion order by
using index. Hence index will play very important role. Python supports both positive and
negative indexes. +ve index means from left to right where as negative index means right to left.

e List objects are mutable. i.e we can change the content

Python Programming

P.Murali, Asst.Prof CSE Department

A list can be define as below

L1 = ["John", 102, "USA"]
L2=1[1,2 3,4,5,6]

1. Creation of List Objects:

1. We can create empty list object as follows...
1) list=[]

2) print(list)

3) print(type(list))

4)

5) [l

6) <class 'list'>

2.1f we know elements already then we can create list as follows

list=[10,20,30,40]

3. With dynamic input:

1) list=eval(input("Enter List:"))
2) print(list)

3) print(type(list))

4)

5) D:\Python_classes>py test.py
6) Enter List:[10,20,30,40]

7) [10, 20, 30, 40]

8) <class 'list'>

4.List vs mutability:

Aditya Engineering College(A)

Once we creates a List object, we can modify its content. Hence List objects are Mutable.

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

1) n=[10,20,30,40]

2) print(n)
3) n[1]=777
4) print(n)
5)

6) D:\Python_classes>py test.py
7) [10, 20, 30, 40]
8) [10, 777, 30, 40]

2. Accessing elements of List:

We can access elements of the list either by using index or by using slice operator(:)

1. By using index:

List follows zero based index. ie index of first element is zero. List supports both +ve
and -ve indexes.

+ve index meant for Left to Right

-ve index meant for Right to Left

list=[10,20,30,40]
3 3 2 -1

e —> 10 20 [0 a0
0 1 2 3

print(list[0]) ==>10

print(list[-1]) ==>40

print(list[10]) ==>IndexError: list index out of range

2. Accessing elements of List:

We can access elements of the list either by using index or by using slice operator(:)
2. By using slice operator:

Syntax:

list2= list1[start:stop:step]

start ==>it indicates the index where slice has to start default value is 0

stop ===>It indicates the index where slice has to end

default value is max allowed index of list ie length of the list step ==>increment value

Python Programming

P.Murali, Asst.Prof CSE Department

default value is 1.

1) n=[1,2,3,4,5,6,7,8,9,10]
2) print(n[2:7:2])

3) print(n[4::2])

4) print(n[3:7])

5) print(n[8:2:-2])

6) print(n[4:100])

8) Output

9) D:\Python_classes>py test.py

10) [3, 5, 7]

11) [5, 7, 9]

12) [4, 5, 6, 7]

13) [9, 7, 5]

2y [5,6,7,8,9,10]

Important functions of List:

1. To get information about list len(), count(), index()

2. Manipulating elements of List
append(), insert(), extend(), remove(), pop()
3. Ordering elements of List reverse(), sort()

1.len():

returns the number of elements present in the list

Eg: n=[10,20,30,40]
print(len(n))
= = > 4

2. count():

It returns the number of occurrences of specified item in the list

Python Programming

Aditya Engineering College(A)

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

1} n=]1,2.2.2.2.0.35)
2) print(n.count(1))
3) print(n.count(2))
4) print(n.count(3))
5) print(n.count(4))

7) Output

8) D:\Python_classes>py test.py
9) 1

10) 4

11) 2

12) 0

3.index():

returns the index of first occurrence of the specified item.
1) n=[1,2,2,2,2,3,3]
2) print(n.index(1)) ==>0
3) print(n.index(2)) ==>1
4) print(n.index(3)) ==>5
5) print(n.index(4)) ==>ValueError: 4 is notin list

4.append():

We can use append() function to add item at the end of the list.

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

1) list=[]
2) list.append("A")
3) list.append('"B")
4) list.append("C")
5) print(list)
6)
7) D:\Python_classes>py test.py
8) ['A','B', 'C]
1) list=[]
2) foriinrange(101):
3) ifi%10==0:

4) list.append(i)
5) print(list)

6)

7)

8) D:\Python_classes>py test.py
9) [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

5.insert():
To insert item at specified index position .
1) n=[1,2,3,4,5] 1) n=[1,2,3,4,5]
2) n.insert(1,888) 2) n.insert(10,777)
3) print(n) 3) n.insert(-10,999)
4) 4) print(n)
5) D:\Python_classes>py test.py 6) D:\Python_classes>py test.py
6) [1,888,2,3,4,5] 7) [999,1,2,3,4,5,777)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Differences between append() and insert()

append() insert()

In List when we add any element it will | In List we can insert any element in
come in last i.e. it will be last element. | particular index number

6.extend():

To add all items of one list to another list
I1.extend(12) - all items present in 12 will be added to 11

1) orderl=["Chicken","Mutton","Fish"] 1) order=["Chicken","Mutton","Fish"]
2) 0rder2=["RC","KF","FO"]
3) orderl.extend(order2) .
4) print(orderl) 3) print{order)

5) 4)

6) D:\Python_classes>py test.py 5) D:\Python_classes>py test.py

7) ['Chicken', 'Mutton', 'Fish', 'RC', 'KF', 'FO'] |6) ['Chicken’, 'Mutton', 'Fish','M’,"u’,'s', 'h’, 'r', o', "0, 'm']

2) order.extend("Mushroom")

7.remove():

We can use this function to remove specified item from the list. If the item present

multiple times then only first occurrence will be removed.
1) n=[10,20,10,30]
2) n.remove(1l0)
3) print(n)
4)
5) D:\Python_classes>py test.py
6) [20, 10, 30]

8. pop():
* It removes and returns the last element of the list.

» This is only function which manipulates list and returns some element.

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

1) n=[10,20,30,40]
2) print(n.pop())
3) print(n.pop())
4) print(n)
6) D:\Python_classes>py test.py
7) 40
8) 30
9) [10, 20]
Differences between removel() and nobl)
remove() pop()
1) We can use to remove special element 1) We can use to remove last element
from the List. from the List.
2) It can’t return any value. 2) It returned removed element.
3) If special element not available then we 3) If List is empty then we get Error.
get VALUE ERROR.

9.reverse():

We can use to reverse() order of elements of list.

1) n=[10,20,30,40]
2) n.reverse()
3) print(n)
4)
5) D:\Python_classes>py test.py
6) [40, 30, 20, 10]
10.sort():

In list by default insertion order is preserved. If want to sort the elements of list according to

default natural sorting order then we should go for sort() method.

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

* For numbers ==>default natural sorting order is Ascending Order

» For Strings ==> default natural sorting order is Alphabetical Order
1) n=[20,5,15,10,0]

2) n.sort()

3) print(n) #[0,5,10,15,20]

4)

5) s=["Dog","Banana","Cat","Apple"]

6) s.sort()

7y print(s) #['Apple','Banana’,'Cat’,'Dog']

11.clear():

We can use clear() function to remove all elements of List.

D:\Python_classes>py test.py
[10, 20, 30, 40]

[]

1. n=[10,20,30,40]
2. print(n)

3. n.clear()

4. print(n)

=R

6. Output

F

8.

9.

Topic 2: Defining Simple Functions of List

1.The Syntax of Simple Function Definitions:

Most of the functions used thus far expect one or more arguments and return a value. Let’s
define a function that expects a number as an argument and returns the square of that
number. First, we consider how the function will be used. Its name is square, So you can
call it like this:

>>> square(2)

4

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

>>> square(6)

36

>>> square(2.5)

6.25

The definition of this function consists of a header and a body. Here is the code:

def square(x):

"""Returns the square of x."™"

return X * x

2.Parameters and Arguments

A parameter is the name used in the function definition for an argument that is passed to

the function when it is called. Some functions expect no arguments, so they are defined with no

parameters.
3.The return Statement

The programmer places a return statement at each exit point of a function when that function
should explicitly return a value. The syntax of the return statement for these cases is

the following:

return <expression>

4.Boolean Functions

A Boolean function usually tests its argument for the presence or absence of some property.
The function returns True if the property is present, or False otherwise. The next example
shows the use and definition of the Boolean function odd, which tests a number to see
whether it is odd.

>>> 0dd(5)

True

>>> 0dd(6)

False

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

def odd(x):

""Returns True if x is odd or False otherwise."""

ifx%2==1.

return True

else:

return False

Note that this function has two possible exit points, in either of the alternatives within the

if/else statement.

5.Defining a main Function

In scripts that include the definitions of several cooperating functions, it is often useful to
define a special function named main that serves as the entry point for the script. This func
def main():

"""The main function for this script.™""
number = float(input("Enter a number: "))

result = square(number)

print("The square of", number, "is", result)

def square(x):

"""Returns the square of x.

return X * X

The entry point for program execution

if _name__ =="_ main:"__

main()

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Topic:3 Dictionaries

We can use List, Tuple and Set to represent a group of individual objects as a single entity.

« If we want to represent a group of objects as key-value pairs then we should go for Dictionary.
Eg:

rollno----name

phone number--address

ipaddress---domain name

Duplicate keys are not allowed but values can be duplicated.

« Heterogeneous objects are allowed for both key and values.

« insertion order is not preserved

» Dictionaries are mutable

« Dictionaries are dynamic

« indexing and slicing concepts are not applicable

Note: In C++ and Java Dictionaries are known as "Map" where as in Perl and

Ruby it is known as "Hash"

How to create Dictionary?

d={} or d=dict()

we are creating empty dictionary. We can add entries as follows
d[100]="srinu"

d[200]="ravi"

d[300]="shiva"

print(d) #{100: 'srinu’, 200: 'ravi', 300: 'shiva'}

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

How to access data from the dictionary?

We can access data by using keys.

d={100:'srinu" ,200:'ravi', 300:'shiva'}

print(d[100]) #srinu

print(d[300]) #shiva

If the specified key is not available then we will get KeyError

print(d[400]) # KeyError: 400

How to update dictionaries?

d[key]=value

If the key is not available then a new entry will be added to the dictionary with
the specified key-value pair

If the key is already available then old value will be replaced with new value.

Adding Keys and Replacing Values
You add a new key/value pair to a dictionary by using the subscript operator []. The form

of this operation is the following:

<a dictionary>[<a key>] = <a value>

The next code segment creates an empty dictionary and adds two new entries:
>>> info = {}

>>> info["name"] = "Sandy"

>>> info["occupation™] = "hacker"

>>> info

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

{'name":'Sandy’, 'occupation':'hacker'}

The subscript is also used to replace a value at an existing key, as follows:
>>> info["occupation"] = "manager"
>>> info

{'name":'Sandy’, 'occupation':'manager'}

Removing Keys

To delete an entry from a dictionary, one removes its key using the method pop. This method
expects a key and an optional default value as arguments. If the key is in the dictionary, it is
removed, and its associated value is returned. Otherwise, the default value is returned.

>>> print(info.pop("job”, None))
None

>>> print(info.pop("occupation™))
manager

>>> info

{'name":'Sandy'}

Traversing a Dictionary
When a for loop is used with a dictionary, the loop’s variable is bound to each key in an
unspecified order. The next code segment prints all of the keys and their values in our info

dictionary:

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

for key in info:

print(key, info[key])

Alternatively, you could use the dictionary method items() to access the dictionary’s

entries. The next session shows a run of this method with a dictionary of grades:

>>> grades = {90:'A’, 80:'B', 70:'C'}
>>> |ist(grades.items())

[(80,'B"), (90,'A), (70,'CY]

Dictionary Operation What It Does
Ten(d) Returns the number of entries in d.
d[key] Used for inserting a new key, replacing a value, or obtaining a

value at an existing key.

d.get(key [, default]) Returns the value if the key exists or returns the default if the
Key does not exist. Raises an error if the default is omitted
and the key does not exist.

d.pop(key [, default]) Removes the key and returns the value if the key exists or
returns the default if the key does not exist. Raises an error if
the default is omitted and the key does not exist.

Tist(d.keys()) Returns a list of the keys.

list(d.values()) Returns a list of the values.

Tist(d.items()) Returns a list of tuples containing the keys and values for
each entry.

d.clear() Removes all the keys.

for key in d: key is bound to each key in d in an unspecified order.

Some commonly used dictionary operations

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Design with Function

Design is important in many fields. The architect who designs a building, the engineer who
designs a bridge or a new automobile, and the politician, advertising executive, or army general
who designs the next campaign must organize the structure of a system and coordinate the actors
within it to achieve its purpose. Design is equally important in constructing software systems,
some of which are the most complex artifacts ever built by human beings. In this chapter, we
explore the use of functions to design software systems.

Topic 4. Functions as Abstraction Mechanisms

The problem is that the human brain can wrap itself around just a few things at once
(psychologists say three things comfortably, and at most seven). People cope with complexity by
developing a mechanism to simplify or hide it. This mechanism is called an abstraction. Put most
plainly, an abstraction hides detail and thus allows a person to view many things as just one
thing.

The problem is that the human brain can wrap itself around just a few things at once
(psychologists say three things comfortably, and at most seven). People cope with complexity by
developing a mechanism to simplify or hide it. This mechanism is called an abstraction. Put most
plainly, an abstraction hides detail and thus allows a person to view many things as just one
thing. We use abstractions to refer to the most common tasks in everyday life.

1.Functions Eliminate Redundancy

The first way that functions serve as abstraction mechanisms is by eliminating redundant, or
repetitious, code. To explore the concept of redundancy, let’s look at a function named
summation, which returns the sum of the numbers within a given range of numbers. Here is the
definition of summation, followed by a session showing its use:

def summation(lower, upper):
""" Arguments: A lower bound and an upper bound

Returns: the sum of the numbers from lower through

upper

result =0

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

while lower <= upper:
result += lower
lower +=1
return result
>>> summation(1,4) # The summation of the numbers 1..4
10
>>> summation(50,100) # The summation of the numbers 50..100
3825
2.Functions Hide Complexity

Another way that functions serve as abstraction mechanisms is by hiding complicated details. To
understand why this is true, let’s return to the summation function. Although the idea of
summing a range of numbers is simple, the code for computing a summation is not. We’re not
just talking about the amount or length of the code, but also about the number of interacting
components. There are three variables to manipulate, as well as countcontrolled loop logic to
construct.

3.Functions Support General Methods with Systematic Variations

An algorithm is a general method for solving a class of problems. The individual problems that
make up a class of problems are known as problem instances. The problem instances for our
summation algorithm are the pairs of numbers that specify the lower and upper bounds of the
range of numbers to be summed.

4.Functions Support the Division of Labor

In a well-organized system, whether it is a living thing or something created by humans, each
part does its own job or plays its own role in collaborating to achieve a common goal.
Specialized tasks get divided up and assigned to specialized agents. Some agents might assume
the role of managing the tasks of others or coordinating them in some way. But, regardless of the
task, good agents mind their own business and do not try to do the jobs of others.

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Topic 5: Problem Solving with Top-Down Design

One popular design strategy for programs of any significant size and complexity is called top-
down design. This strategy starts with a global view of the entire problem and breaks the
problem into smaller, more manageable sub problems—a process known as problem
decomposition. As each sub problem is isolated, its solution is assigned to a function. Problem
decomposition may continue down to lower levels, because a sub problem might in turn contain
two or more lower-level problems to solve. As functions are developed to solve each sub
problem, the solution to the overall problem is gradually filled out in detail. This process is also
called stepwise refinement.

The Design of the Text-Analysis Program:

The program requires simple input and output components, so these can be expressed as
statements within a main function. However, the processing of the input is complex enough to
decompose into smaller sub processes, such as obtaining the counts of the sentences, words, and
syllables and calculating the readability scores.

Problem Solving with Top-Down Design

main

strin
e countSentences
int
strin
ne countWords
int
strin
ul countSyllables
int
string lables!
o syllablesin
3ints
: fleschindex
float
3ints
oat gradelevel

Figure 6-1 A structure chart for the text-analysis program

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

The Design of the Doctor Program

The doctor program processes the input by responding to it as an agent would in a conversation.
Thus, the responsibility for responding is delegated to the reply function. Note that the two
functions main and reply have distinct responsibilities. The job of main is to handle user
interaction with the program, whereas reply is responsible for implementing the “doctor logic” of
generating an appropriate reply. The assignment of roles and responsibilities to different actors
in a program is also called responsibility-driven design.

Problem Solving with Top-Down Design

Data Pool

hedges

qualifiers

replacements

string string

main

string

string
string

reply

string
string

changePerson

Figure 6-3 A structure chart for the doctor program

Topic 6: Design with Recursive Functions

In top-down design, you decompose a complex problem into a set of simpler problems and solve
these with different functions. In some cases, you can decompose a complex problem into
smaller problems of the same form. In these cases, the subproblems can all be solved by using

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

the same function. This design strategy is called recursive design, and the resulting functions are
called recursive functions.

Defining a Recursive Function

A recursive function is a function that calls itself. To prevent a function from repeating itself
indefinitely, it must contain at least one selection statement. This statement examines a condition
called a base case to determine whether to stop or to continue with another recursive step.

Let’s examine how to convert an iterative algorithm to a recursive function. Here is a definition

of a function displayRange that prints the numbers from a lower bound to an upper bound:

def displayRange(lower, upper):
"""Outputs the numbers from lower through upper.™"
while lower <= upper:
print(lower)

lower = lower + 1

How would we go about converting this function to a recursive one? First, you should note
two important facts:
1. The loop’s body continues execution while lower <= upper.

2. When the function executes, lower is incremented by 1, but upper never changes.

The equivalent recursive function performs similar primitive operations, but the loop
is replaced with a selection statement, and the assignment statement is replaced with a

recursive call of the function. Here is the code with these changes:

def displayRange(lower, upper):

"""'Qutputs the numbers from lower through upper."""

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

if lower <= upper:
print(lower)

displayRange(lower + 1, upper)

Using Recursive Definitions to Construct Recursive Functions
Recursive functions are frequently used to design algorithms for computing values that
have a recursive definition. A recursive definition consists of equations that state what
a value is for one or more base cases and one or more recursive cases. For example, the

Fibonacci sequence is a series of values with a recursive definition.

The first and second numbers in the Fibonacci sequence are 1. Thereafter, each number in the
sequence is the sum of its two predecessors, as follows:

11235813...

More formally, a recursive definition of the nth Fibonacci number is the following:

Fib(n) =1, whenn=10orn=2
Fib(n) = Fib(n - 1) + Fib(n - 2), forall n > 2
Given this definition, you can construct a recursive function that computes and returns the

nth Fibonacci number. Here it is:

def fib(n):
""Returns the nth Fibonacci number."""
ifn<3:

return 1

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

else:
return fib(n - 1) + fib(n - 2)
Note that the base case as well as the two recursive steps return values to the caller.

Infinite Recursion: Recursive functions tend to be simpler than the corresponding loops, but
they still require thorough testing. One design error that might trip up a programmer occurs when
the function can (theoretically) continue executing forever, a situation known as infinite
recursion.

Topic 7: Managing a Program’s Namespace

namespace—that is, the set of its variables and their values—is structured and how you can
control it via good design principles.

Module Variables, Parameters, and Temporary Variables

The below program includes many variable names; for the purposes of this example, we will
focus on the code for the variable replacements and the function changePerson

replacements - {"l":"yOU", "me":"yOU", llmyll:llmyllllyourll’

llwell:llyoull’ "US":"yOU ’ mine“:“yours“}

def changePerson(sentence):

""Replaces first person pronouns with second person pronouns.

words = sentence.split()

replyWords =[]

for word in words:
replyWords.append(replacements.get(word, word))

return " ".join(replyWords)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

This code appears in the file doctor.py, so its module name is doctor. The names in this

code fall into four categories, depending on where they are introduced:

This code appears in the file doctor.py, so its module name is doctor. The names in this

code fall into four categories, depending on where they are introduced:

1. Module variables. The names replacements and changePerson are introduced at the level of
the module. Although replacements names a dictionary and changePersonnames a function, they
are both considered variables. You can see the module variables of the doctor module by
importing it and entering dir(doctor) at a shell prompt. When module variables are introduced in
a program, they are immediately given a value.

2. Parameters. The name sentence is a parameter of the function changePerson. A parameter
name behaves like a variable and is introduced in a function or method header. The parameter
does not receive a value until the function is called.

3. Temporary variables. The names words, replyWords, and word are introduced in the body of
the function changePerson. Like module variables, temporary variables receive their values as
soon as they are introduced.

4. Method names. The names split and join are introduced or defined in the strtype. As
mentioned earlier, a method reference always uses an object, in this case, a string, followed by a
dot and the method name.

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Topic 8: Higher-Order Functions

Like any skill, a designer’s knack for spotting the need for a function is developed with practice.
As you gain experience in writing programs, you will learn to spot common and redundant
patterns in the code. One pattern that occurs again and again is the application of a function to a
set of values to produce some results. Here are some examples:

* The numbers in a text file must be converted to integers or floats after they are input.

* The first-person pronouns in a list of words must be changed to the corresponding

second-person pronouns in the doctor program.

* Only scores above the average are kept in a list of grades.

* The sum of the squares of a list of numbers is computed.

In this section, we learn how to capture these patterns in a new abstraction called a higher-order
function. For these patterns, a higher-order function expects a function and a set of data values as
arguments.

Topic:10 Modules

A Python module is a file containing Python definitions and statements. A module can define
functions, classes, and variables. A module can also include runnable code. Grouping related
code into a module makes the code easier to understand and use. It also makes the code logically
organized.

Example: create a simple module
A simple module, calc.py
def add(x, y):
return (x+y)
def subtract(x, y):

return (X-y)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

A module allows you to logically organize your Python code. Grouping related code into a
module makes the code easier to understand and use. A module is a Python object with
arbitrarily named attributes that you can bind and reference.

Topic:11 Python Packages

We usually organize our files in different folders and subfolders based on some criteria, so that
they can be managed easily and efficiently.

For example, we keep all our games in a Games folder and we can even subcategorize according
to the genre of the game or something like this.

The same analogy is followed by the Python package.
Creating Package:

* Let’s create a package named mypckg that will contain two modules modl and mod2. To
create this module follow the below steps —

» Create a folder named mypckg.
 Inside this folder create an empty Python file i.e. __init__.py

* Then create two modules mod1 and mod2 in this folder.

Mod1.py

» def gfg():

. print("Welcome to GFG")
Mod2.py

» defsum(a, b):
. return a+b
Understanding __init__.py
« _init__.py helps the Python interpreter to recognise the folder as package.

* It also specifies the resources to be imported from the modules. If the __init__.py is
empty

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

__init__.py
« from .mod1 import gfg

* from.mod2 import sum

« This __init__.py will only allow the gfg and sum functions from the modl and mod?2
modules to be imported.

Import Modules from a Package

« We can import these modules using the from...import statement and the dot(.) operator.

+ Syntax:

Import package_name.module_name

Example: Import Module from package

* We will import the modules from the above created package and will use the functions
inside those modules.

« from mypckg import mod1l
« from mypckg import mod2
* modl.gfg()
* res =mod2.sum(l, 2)
» print(res)

Output:
* Welcome to GFG

e 3

Python Programming

https://www.geeksforgeeks.org/import-module-python/

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Topic:12 Case Study: Gathering Information from a File System

e —|
CASE STUDY: Gathering Information from a File System

Modern file systems come with a graphical browser, such as Microsoft’s Windows
Explorer or Apple’s Finder. These browsers allow the user to navigate to files or
folders by selecting icons of folders, opening these by double-clicking, and selecting
commands from a drop-down menu. Information on a folder or a file, such as the size
and contents, is also easily obtained in several ways.

Users of terminalbased user interfaces (see Chapter 2) must rely on entering the
appropriate commands at the terminal prompt to perform these functions. In this
case study, we develop a simple terminalbased file system navigator that provides
some information about the system. In the process, we will have an opportunity to
exercise some skills in top-down design and recursive design.

Request

Write a program that allows the user to obtain information about the file system.

Analysis
File systems are treedike structures, as shown in Figure 6-5.

D D
/\ | | | /N
D
F F F /\ F
D = directory
F = file £ k

Figure 6-5 The structure of a file system

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

At the top of the tree is the root directory (the term “directory” is a synonym for
“folder,” among users of terminal-based systems). Under the root are files and
subdirectories. Each directory in the system except the root lies within another
directory called its parent. For example, in Figure 6-5, the root directory contains
four files and two subdirectories. On a UNIX-based file system (the system that
underlies macOS), the path to a given file or directory in the system is a string that
starts with the / (forward slash) symbol (the root), followed by the names of the
directories traversed to reach the file or directory. The / (forward slash) symbol also
separates each name in the path. Thus, the path to the file for this chapter on Ken's
laptop might be the following:

/Users/KenLaptop/Book/Chapter6/Chapter6.doc
On a Windows-based file system, the \ symbol is used instead of the / symbol.

The program we will design in this case study is named filesys.py. It provides
some basic browsing capability as well as options that allow you to search for

a given filename and find statistics on the number of files and their size in a
directory. At program startup, the current working directory (CWD) is the directory
containing the Python program file. The program should display the path of the
CWD, a menu of command options, and a prompt for a command, as shown in
Figure 6-6.

/Users/KenLaptop/Book/Chapteré

1 List the current directory

2 Move up

3 Move down

B Number of files in the directory
5 Size of the directory in bytes
6 Search for a filename
7 Quit the program
Enter a number:

Figure 6-6 The command menu of the filesys program

When the user enters a command number, the program runs the command,
which may display further information, and the program displays the CWD and
command menu again. An unrecognized command produces an error message,
and command number 7 quits the program. Table 6-1 summarizes what the com-
mands do.

(continues)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)
(continued)
Command What It Does

List the current working directory

Move up

Move down

Number of files in the directory

Size of the directory in bytes

Search for a filename

Quit the program

Prints the names of the files and directories in the
current working directory (CWD).

If the CWD is not the root, move to the parent
directory and make it the CWD.

Prompts the user for a directory name. If the name
is not in the CWD, print an error message; other-
wise, move to this directory and make it the CWD.

Prints the number of files in the CWD and all of its
subdirectories.

Prints the total number of bytes used by the files in
the CWD and all of its subdirectories.

Prompts the user for a search string. Prints a list of
all the filenames (with their paths) that contain the
search string, or “String not found."

Prints a signoff message and exits the program.

Table 6-1 The commands in the filesys program

Design

You can structure the program according to two sets of tasks: those concerned with
implementing a menu-driven command processor, and those concerned with executing
the commands. The first group of operations includes the main function. In the following
discussion, we work top-down and begin by examining the first group of operations.

As in many of the programs we have examined recently in this book, the main
function contains a driver loop. This loop prints the CWD and the menu, calls other
functions to input and run the commands, and breaks with a signoff message when
the command is to quit. Here is the pseudocode:

function main()
while True

print(os.getcwd())

print (MENU)

command = acceptCommand()

runCommand (command)
if command == QUIT

print("Have a nice day!")

break

Python Programming

(continues)

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

(confinued)

The function os.getcwd returns the path of the CWD. Note also that MENU and QuIT
are module variables initialized to the appropriate strings before main is defined.
The acceptCommand function loops until the user enters a number in the range of the
valid commands. These commands are specified in a tuple named COMMANDS that is
also initialized before the function is defined. The function thus always returns a valid
command number.

The runCommand function expects a valid command number as an argument. The
function uses a multi-way selection statement to select and run the operation
corresponding to the command number. When the result of an operation is returned,
it is printed with the appropriate labeling.

That’s it for the menu-driven command processor in the main function. Although there
are other possible approaches, this design makes it easy to add new commands to
the prograrm.

The operations required to list the contents of the CWD, move up, and move down
are simple and need no real design work. They involve the use of functions in the os
and os. path modules to list the directory, change it, and test a string to see if it is
the name of a directory. The implementation shows the details.

The other three operations all involve traversals of the directory structure in the
CWD. During these traversals, every file and every subdirectory are visited. Directory
structure is in fact recursive: each directory can contain files (base cases) and other
directories (recursive steps). Thus, we can develop a recursive design for each
operation.

The countFiles function expects the path of a directory as an argument and

returns the number of files in this directory and its subdirectories. If there are no
subdirectories in the argument directory, the function just counts the tiles and returns
this value. If there is a subdirectory, the function moves down to it, counts the files
(recursively) in it, adds the result to its total, and then moves back up to the parent
directory. Here is the pseudocode:

function countFiles(path)
count = 0
lyst = os.listdir(path)
for element in lyst
if os.path.isfile(element)
count += 1
alea:
os.chdir(element)
count += countFiles(os.getcwd())
os.chdir("..")
return count

(continues)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

The countBytes function expects a path as an argument and returns the total number
of bytes in that directory and its subdirectories. Its design resembles countFiles.

The findFiles function accumulates a list of the filenames, including their paths, that
contain a given target string, and returns this list. Its structure resembles the other
two recursive functions, but the findFiles function builds a list rather than a number.
When the function encounters a target file, its name is appended to the path, and
then the result string is appended to the list of files. We use the module variable
os.sep to obtain the appropriate slash symbol (/ or \) on the current file system.
When the function encounters a directory, it moves to that directory, calis itself with
the new CWD, and extends the files list with the resulting list. Here is the pseudocode:

function findFiles(target, path)
files = []
lyst = os.listdir(path)
for element in lyst
if os.path.isfile(element):
if target in element:

files.append(path + os.sep + element)
else:

os.chdir(elesent)
files.extend(findFiles(target, os.getcwd()))
os.chdir("..™)
return files

The trick with recursive design is to spot elements in a structure that can be treated
as base cases (such as files) and other elements that can be treated as recursive
steps (such as directories). The recursive algorithms for processing these structures
flow naturally from these insights.

Implementation (Coding)

Near the beginning of the program code, we find the important variables, with the
functions listed in a top-down order.

nun

Program: filesys.py

Author: Ken

Provides a menu-driven tool for navigating a file system
and gathering information on files.

import os, os.path
QuIT = '7°

cms= ('l'. '2'. 13-' 04-. 'S" -6-' q7-)

(continues)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

{continued)

MENU = """1 List the current directory

SNV A WN

def

def

def

Move up
Move down
Number of files in the directory
Size of the directory in bytes
Search for a filename

Quit the program

main():
while True:
print(os.getcwd())
print (MENU)
command = acceptCommand()
runCommand (command)
1f command == QUIT:
print("Have a nice day!")
break

acceptCommand():
"““Inputs and returns a legitimate command number."""
comsand = input("Enter a number: ")
if command in COMMANDS:
return command
else:
print("Error: command not recognized")
return acceptCommand()

runCommand (command) :
""“Selects and runs a command."""

if command =—= '1':
listCurrentDir(os.getcwd())

elif command = '2":
movelp()

elif command = '3':
moveDown(os.getcwd())

elif command == "4':
print("The total number of files is", \
countFiles(os.getcwd()))

elif command = '5":
print("The total number of bytes is"”, \
countBytes(os.getcwd()))

elif command == '6':

target = input("Enter the search string: ")
fileList = findFiles(target, os.getcwd())
if not fileList:

print("String not found")
else:

leontinuas]

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

{continued)
for £ in fileList:
print(f)
def listCurrentDir(dirName):

def

def

def

def

e T

Prints a list of the cwd's contents.'
lyst = os.listdir(dirName)
for element in lyst: print(element)

moveUp():
"""Moves up to the parent directory.
os.chdir("..")

moveDown (currentDir):
"""Movas down to the named subdirectory if it exists """
newDir = input("Enter the directory name: ")
if os.path.exists(currentDir + os.sep + newDir) and \
os.path.isdir(newDir):
os.chdir(newDir)
else:
print("ERROR: no such name")

"

countFiles(path):
""“Returns the number of files in the cwd and
all its subdirectories."""
count = 0
lyst = os.listdir(path)
for element in lyst:
if os.path.isfile(element):

count += 1
else:
os.chdir(element)

count += countFiles(os.getcwd())
os.chdir("..")
return count

countBytes(path):
""“Returns the number of bytes in the cwd and
all its subdirectories.”"""
count = 0
lyst = os.listdir(path)
for element in lyst:

if os.path.isfila(elemant):

: count += os.path.getsize(element)
elses
os.chdir(element)

{continues)

Python Programming

P.Murali, Asst.Prof CSE Department

(continued)

count = countBytes(os.getcwd())
os.chdir("..")
return count

def findFiles(target, path):
""“Returns a list of the filenames that contain

the target string in the cwd and all its subdirectories.”™"

files = []

lyst = os.listdir(path)

for element in lyst:

if os.path.isfile(element):
if target in element:

files.append(path + os.sep + element)
os.chdir(element)
files.extend(findFiles(target, os.getcwd()))
os.chdir("..")

return files

if name = "__main
main(Q)

Python Programming

Aditya Engineering College(A)

P.Murali, Asst.Prof

Python Programming

CSE Department

Aditya Engineering College(A)

