
P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

UNIT-IV

 Object Oriented Programming

Topic 1: Concept of class, object and instances

 Like other general-purpose programming languages, Python is also an object-oriented

language since its beginning.

 It allows us to develop applications using an Object-Oriented approach. In Python we can

easily create and use classes and objects.

 An object-oriented paradigm is to design the program using classes and objects.

 The object is related to real-word entities such as book, house, pencil, etc. The oops

concept focuses on writing the reusable code.

 It is a widespread technique to solve the problem by creating objects.

Principles of oop:

• Class

• Object

• Method

• Inheritance

• Polymorphism

• Data Abstraction

• Encapsulation

1.Class:

• The class can be defined as a collection of objects. It is a logical entity that has some

specific attributes and methods.

• For example: if you have an employee class, then it should contain an attribute and

method, i.e. an email id, name, age, salary, etc.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Syntax:

• class ClassName:

• <statement-1>

• .

• <statement-N>

Creating classes in Python:

• class Employee:

• id = 10

• name = "Devansh"

• def display (self):

• print(self.id,self.name)

•

• Here, the self is used as a reference variable, which refers to the current class object.

• It is always the first argument in the function definition. However, using self is optional

in the function call.

2.Object

• The object is an entity that has state and behavior. It may be any real-world object like

the mouse, keyboard, chair, table, pen, etc.

• Everything in Python is an object, and almost everything has attributes and methods.

• All functions have a built-in attribute __doc__, which returns the docstring defined in the

function source code.

• Syntax:

• Object name=classname()

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Ex:

• class car:

• def __init__(self,modelname, year):

• self.modelname = modelname

• self.year = year

• def display(self):

• print(self.modelname,self.year)

•

• c1 = car("Toyota", 2016)

 c1.display()

Creating an instance of the class:

• class Employee:

• id = 10

• name = "John"

• def display (self):

• print("ID: %d \nName: %s"%(self.id,self.name))

• # Creating a emp instance of Employee class

• emp = Employee()

• emp.display()

output:

• ID: 10

• Name: John

Delete the Object:

• We can delete the properties of the object or object itself by using the del keyword.

Consider the following example.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

• class Employee:

• id = 10

• name = "John"

•

• def display(self):

• print("ID: %d \nName: %s" % (self.id, self.name))

• # Creating a emp instance of Employee class

•

• emp = Employee()

•

• # Deleting the property of object

• del emp.id

• # Deleting the object itself

• del emp

• emp.display()

3.Method:

• The method is a function that is associated with an object. In Python, a method is not

unique to class instances. Any object type can have methods.

4.Inheritance:

• Inheritance is the most important aspect of object-oriented programming, which

simulates the real-world concept of inheritance.

• It specifies that the child object acquires all the properties and behaviors of the parent

object.

• By using inheritance, we can create a class which uses all the properties and behavior of

another class.

• The new class is known as a derived class or child class, and the one whose properties are

acquired is known as a base class or parent class.

• It provides the re-usability of the code.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

5.Polymorphism:

• Polymorphism contains two words "poly" and "morphs". Poly means many, and morph

means shape.

• By polymorphism, we understand that one task can be performed in different ways.

• For example - you have a class animal, and all animals speak.

• But they speak differently. Here, the "speak" behavior is polymorphic in a sense and

depends on the animal.

• So, the abstract "animal" concept does not actually "speak", but specific animals (like

dogs and cats) have a concrete implementation of the action "speak".

6.Encapsulation:

• Encapsulation is also an essential aspect of object-oriented programming.

• It is used to restrict access to methods and variables.

• In encapsulation, code and data are wrapped together within a single unit from being

modified by accident.

7.Data abstraction:

• Data abstraction and encapsulation both are often used as synonyms.

• Both are nearly synonyms because data abstraction is achieved through encapsulation.

• Abstraction is used to hide internal details and show only functionalities.

• Abstracting something means to give names to things so that the name captures the core

of what a function or a whole program does.

Topic: 2 Constructors

• A constructor is a special type of method (function) which is used to initialize the

instance members of the class.

• In C++ or Java, the constructor has the same name as its class, but it treats constructor

differently in Python. It is used to create an object.

• Constructors can be of two types.

• Parameterized Constructor

• Non-parameterized Constructor

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

• Constructor definition is executed when we create the object of this class. Constructors

also verify that there are enough resources for the object to perform any start-up task.

Creating the constructor in python:

• In Python, the method the __init__() simulates the constructor of the class. This method

is called when the class is instantiated.

• It accepts the self-keyword as a first argument which allows accessing the attributes or

method of the class.

Ex:

• class Employee:

• def __init__(self, name, id):

• self.id = id

• self.name = name

• def display(self):

• print("ID: %d \nName: %s" % (self.id, self.name))

• emp1 = Employee("John", 101)

• emp2 = Employee("David", 102)

accessing display() method to print employee 1 information

• emp1.display()

accessing display() method to print employee 2 information

• emp2.display()

Output:

• ID: 101

• Name: John

• ID: 102

• Name: David

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Constructors can be of two types.

1.Python Non-Parameterized Constructor

• The non-parameterized constructor uses when we do not want to manipulate the value or

the constructor that has only self as an argument.

Consider the following example.

• class Student:

• # Constructor - non parameterized

• def __init__(self):

• print("This is non parametrized constructor")

• def show(self,name):

• print("Hello",name)

• student = Student()

• student.show("John")

2.Python Parameterized Constructor

• class Student:

• # Constructor - parameterized

• def __init__(self, name):

• print("This is parametrized constructor")

• self.name = name

• def show(self):

• print("Hello",self.name)

• student = Student("John")

• student.show()

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

output:

This is parametrized constructor

Hello John

Topic : 3 Destructors in Python

• The users call Destructor for destroying the object.

• In Python, developers might not need destructors as much it is needed in the C++

language.

• This is because Python has a garbage collector whose function is handling memory

management automatically.

• In this article, we will discuss how the destructors in Python works and when the users

can use them.

• The __del__() function is used as the destructor function in Python.

• The user can call the __del__() function when all the references of the object have been

deleted, and it becomes garbage collected.

Syntax:

def __del__(self):

 # the body of destructor will be written here.

Ex:

• class Animals:

•

• # we will initialize the class

• def __init__(self):

• print('The class called Animals is CREATED.')

•

• # now, we will Call the destructor

• def __del__(self):

• print('The destructor is called for deleting the Animals.')

•

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

• object = Animals()

• del object

output:

• The class called Animals is CREATED.

• The destructor is called for deleting the Animals.

Topic: 4 Inheritance

• Inheritance is an important aspect of the object-oriented paradigm.

• Inheritance provides code reusability to the program because we can use an existing class

to create a new class instead of creating it from scratch.

• In inheritance, the child class acquires the properties and can access all the data members

and functions defined in the parent class.

• A child class can also provide its specific implementation to the functions of the parent

class. In this section of the tutorial, we will discuss inheritance in detail.

1.Python Single inheritance

Syntax:

• class derived-class(base class):

• <class-suite>

A class can inherit multiple classes by mentioning all of them inside the bracket. Consider

the following syntax:

• class derive-class(<base class 1>, <base class 2>, <base class n>):

 <class - suite>

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Ex:

• class Animal:

• def speak(self):

• print("Animal Speaking")

• #child class Dog inherits the base class Animal

• class Dog(Animal):

• def bark(self):

• print("dog barking")

• d = Dog()

• d.bark()

• d.speak()

Output:

• dog barking

• Animal Speaking

• Eating bread...

2.Python Multiple inheritance:

• Python provides us the flexibility to inherit multiple base classes in the child class.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Syntax:

• class Base1:

• <class-suite>

•

• class Base2:

• <class-suite>

• .

• .

• class BaseN:

• <class-suite>

•

• class Derived(Base1, Base2, BaseN):

• <class-suite>

Ex:

• class Calculation1:

• def Summation(self,a,b):

• return a+b;

• class Calculation2:

• def Multiplication(self,a,b):

• return a*b;

• class Derived(Calculation1,Calculation2):

• def Divide(self,a,b):

• return a/b;

• d = Derived()

• print(d.Summation(10,20))

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

• print(d.Multiplication(10,20))

• print(d.Divide(10,20))

output:

• 30

• 200

• 0.5

Topic : 5 overlapping and overloading operators

Operator overloading is nothing but same name but differerent type of arguments or return type

Ex: print(1*7)

print(“hii"+”hello”)

Overlapping means :the elements of tuple1 is at least one element equal to tuple2

Then this is called overlapping

Ex: q=(1,2,7)

W=(1,9,7)

method overloading:

• Methods in Python can be called with zero, one, or more parameters.

• This process of calling the same method in different ways is called method overloading.

• It is one of the important concepts in OOP. Two methods cannot have the same name in

Python;

• hence method overloading is a feature that allows the same operator to have different

meanings.

Example:

• class hai:

• def Hello(self, name=None):

• if name is not None:

• print('Hello ' + name)

• else:

• print('Hello ')

•

• # Create an instance

• obj = hai()

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

• # Call the method

• obj.Hello()

•

• # Call the method with a parameter

• obj.Hello('Kadambini')

Advantages of method overloading in Python:

• reduces complexities

• improves the quality of the code

• is also used for reusability and easy accessibility

Method Overriding:

• We can provide some specific implementation of the parent class method in our child

class.

• When the parent class method is defined in the child class with some specific

implementation, then the concept is called method overriding.

• We may need to perform method overriding in the scenario where the different definition

of a parent class method is needed in the child class.

Ex:

• class Animal:

• def speak(self):

• print("speaking")

• class Dog(Animal):

• def speak(self):

• print("Barking")

• d = Dog()

• d.speak()

Output:

• Barking

Topic: 6 Adding and retrieving dynamic attributes of classes

Dynamic attributes in Python are terminologies for attributes that are defined at

runtime, after creating the objects or instances. In Python we call all functions, methods

also as an object. So you can define a dynamic instance attribute for nearly anything in

Python. Consider the below example for better understanding about the topic.

https://www.geeksforgeeks.org/python-programming-language/

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Example 1:

class GFG:

 None

def value():

 return 10

Driver Code

g = GFG()

Dynamic attribute of a

class object

g.d1 = value

Dynamic attribute of a

function

value.d1 = "Geeks"

 print(value.d1)

print(g.d1() == value())

Output:
Geeks

True

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Design with Classes

Topic : 7 Objects and Classes:

Programmers who use objects and classes know several things:

• The interface or set of methods that can be used with a class of objects

• The attributes of an object that describe its state from the user’s point of view

• How to instantiate a class to obtain an object

A class definition is like a blueprint for each of the objects of that class. This blueprint contains

• Definitions of all of the methods that its objects recognize

• Descriptions of the data structures used to maintain the state of an object, or its attributes,

from the implementer’s point of view.

A First Example: The Student Class

>>> from student import Student

>>> s = Student("Maria", 5)

>>> print(s)

Name: Maria

Scores: 0 0 0 0 0

>>> s.setScore(1, 100)

>>> print(s)

Name: Maria

Scores: 100 0 0 0 0

>>> s.getHighScore()

100

>>> s.getAverage()

20

>>> s.getScore(1)

100

>>> s.getName()

'Maria'

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Topic: 8 Data modeling Examples

As you have seen, objects and classes are useful for modeling objects in the real world. In this

section, we explore several other examples.

Rational Numbers:

We begin with numbers. A rational number consists of two integer parts, a numerator and a

denominator, and is written using the format numerator / denominator. Examples are 1/2, 1/3,

and so forth. Operations on rational numbers include arithmetic and comparisons. Python has no

built-in type for rational numbers. Let us develop a new class named Rational to support this

type of data.

>>> oneHalf = Rational(1, 2)

>>> oneSixth = Rational(1, 6)

>>> print(oneHalf)

1/2

>>> print(oneHalf + oneSixth)

2/3

>>> oneHalf == oneSixth

False

>>> oneHalf > oneSixth

True

Savings Accounts and Class Variables:

Turning to the world of finance, banking systems are easily modeled with classes. For example, a

savings account allows owners to make deposits and withdrawals. These accounts also compute

interest periodically. A simplified version of a savings account includes an owner’s name, PIN,

and balance as attributes. The interface for a SavingsAccount class is listed in below:

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Topic:9 Case Study An ATM

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Topic: 10 Structuring Classes with Inheritance and Polymorphism

Object-based programming involves the use of objects, classes, and methods to solve

problems. Object-oriented programming requires the programmer to master the following

additional concepts:

1. Data encapsulation. Restricting the manipulation of an object’s state by external users to a

set of method calls.

2. Inheritance. Allowing a class to automatically reuse and extend the code of similar but

more general classes.

3. Polymorphism. Allowing several different classes to use the same general method names.

• Although Python is considered an object-oriented language, its syntax does not enforce

data encapsulation. As you have seen, in the case of simple container objects, like

playing cards, with little special behavior, it is handy to be able to access the objects’

data without a method call.

Inheritance Hierarchies and Modeling:

 Objects in the natural world and objects in the world of artifacts can be classified using inheritance

hierarchies. A simplified hierarchy of natural objects is depicted in below Figure

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Polymorphic Methods:

As we have seen in our two examples, a subclass inherits data and methods from its parent class.

We would not bother subclassing unless the two classes shared a substantial amount of abstract

behavior.

The Costs and Benefits of Object-Oriented Programming

1. Object-oriented programming attempts to control the complexity of a program while still

modeling data that change their state. This style divides up the data into relatively small

units called objects.

2. Although object-oriented programming has become quite popular, it can be overused and

abused. Many small and medium-sized problems can still be solved effectively

3. To conclude, whatever programming style or combination of styles you choose to solve a

problem, good design and common sense are essential

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

File Operations

The file handling plays an important role when the data needs to be stored permanently into the

file. A file is a named location on disk to store related information. We can access the stored

information (non-volatile) after the program termination.

The file-handling implementation is slightly lengthy or complicated in the other programming

language, but it is easier and shorter in Python.

In Python, files are treated in two modes as text or binary. The file may be in the text or binary

format, and each line of a file is ended with the special character.

Hence, a file operation can be done in the following order.

o Open a file

o Read or write - Performing operation

o Close the file

Opening a file

Python provides an open() function that accepts two arguments, file name and access mode in

which the file is accessed. The function returns a file object which can be used to perform

various operations like reading, writing, etc.

Syntax:

1. file object = open(<file-name>, <access-mode>, <buffering>)

The files can be accessed using various modes like read, write, or append. The following are the

details about the access mode to open a file.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Let's look at the simple example to open a file named "file.txt" (stored in the same directory) in

read mode and printing its content on the console.

Example

1. #opens the file file.txt in read mode

2. fileptr = open("file.txt","r")

3.

4. if fileptr:

5. print("file is opened successfully")

Output:

<class '_io.TextIOWrapper'>

file is opened successfully

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

The close() method

Once all the operations are done on the file, we must close it through our Python script using

the close() method. Any unwritten information gets destroyed once the close() method is called

on a file object.

We can perform any operation on the file externally using the file system which is the currently

opened in Python; hence it is good practice to close the file once all the operations are done.

The syntax to use the close() method is given below.

Syntax

1. fileobject.close()

Topic 11: : Reading config files in python, understanding read() function

We can read the file using for loop. Consider the following example.

1. #open the file.txt in read mode. causes an error if no such file exists.

2. fileptr = open("file2.txt","r");

3. #running a for loop

4. for i in fileptr:

5. print(i) # i contains each line of the file

Output:

Python is the modern day language.

It makes things so simple.

Python has easy syntax and user-friendly interaction.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Read Lines of the file

Python facilitates to read the file line by line by using a function readline() method.

The readline() method reads the lines of the file from the beginning, i.e., if we use the readline()

method two times, then we can get the first two lines of the file.

Consider the following example which contains a function readline() that reads the first line of

our file "file2.txt" containing three lines. Consider the following example.

Example 1: Reading lines using readline() function

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","r");

3. #stores all the data of the file into the variable content

4. content = fileptr.readline()

5. content1 = fileptr.readline()

6. #prints the content of the file

7. print(content)

8. print(content1)

9. #closes the opened file

10. fileptr.close()

Output:

Python is the modern day language.

It makes things so simple.

We called the readline() function two times that's why it read two lines from the file.

Python provides also the readlines() method which is used for the reading lines. It returns the list

of the lines till the end of file(EOF) is reached.

Example 2: Reading Lines Using readlines() function

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","r");

3.

4. #stores all the data of the file into the variable content

5. content = fileptr.readlines()

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

6. #prints the content of the file

7. print(content)

8. #closes the opened file

9. fileptr.close()

Output:

['Python is the modern day language.\n', 'It makes things so simple.\n', 'Python has easy syntax

and user-friendly interaction.']

Creating a new file

The new file can be created by using one of the following access modes with the function open().

x: it creates a new file with the specified name. It causes an error a file exists with the same

name.

a: It creates a new file with the specified name if no such file exists. It appends the content to the

file if the file already exists with the specified name.

w: It creates a new file with the specified name if no such file exists. It overwrites the existing

file.

Consider the following example.

Example 1

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","x")

3. print(fileptr)

4. if fileptr:

5. print("File created successfully")

Output:

<_io.TextIOWrapper name='file2.txt' mode='x' encoding='cp1252'>

File created successfully

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

File Pointer positions

Python provides the tell() method which is used to print the byte number at which the file pointer

currently exists. Consider the following example.

1. # open the file file2.txt in read mode

2. fileptr = open("file2.txt","r")

3.

4. #initially the filepointer is at 0

5. print("The filepointer is at byte :",fileptr.tell())

6.

7. #reading the content of the file

8. content = fileptr.read();

9.

10. #after the read operation file pointer modifies. tell() returns the location of the fileptr.

11.

12. print("After reading, the filepointer is at:",fileptr.tell())

Output:

The filepointer is at byte : 0

After reading, the filepointer is at: 117

Topic: 12 Understanding write functions

Writing the file:

To write some text to a file, we need to open the file using the open method with one of the

following access modes.

w: It will overwrite the file if any file exists. The file pointer is at the beginning of the file.

a: It will append the existing file. The file pointer is at the end of the file. It creates a new file if

no file exists.

Consider the following example.

Example

1. # open the file.txt in append mode. Create a new file if no such file exists.

2. fileptr = open("file2.txt", "w")

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

3. # appending the content to the file

4. fileptr.write('''''Python is the modern day language. It makes things so simple.

5. It is the fastest-growing programing language''')

6.

7. # closing the opened the file

8. fileptr.close()

Output:

File2.txt

Python is the modern-day language. It makes things so simple. It is the fastest growing

programming language.

Topic:13 Manipulating file pointer using seek

Python file method seek() sets the file's current position at the offset. The whence argument is

optional and defaults to 0, which means absolute file positioning, other values are 1 which means

seek relative to the current position and 2 means seek relative to the file's end.

There is no return value. Note that if the file is opened for appending using either 'a' or 'a+', any

seek() operations will be undone at the next write.

Syntax

Following is the syntax for seek() method −

fileObject.seek(offset[, whence])

Parameters

 offset − This is the position of the read/write pointer within the file.

 whence − This is optional and defaults to 0 which means absolute file positioning, other

values are 1 which means seek relative to the current position and 2 means seek relative to

the file's end.

Example

The following example shows the usage of seek() method.

Python is a great language

Python is a great language

#!/usr/bin/python

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

Open a file

fo = open("foo.txt", "rw+")

print "Name of the file: ", fo.name

Assuming file has following 5 lines

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

line = fo.readline()

print "Read Line: %s" % (line)

Again set the pointer to the beginning

fo.seek(0, 0)

line = fo.readline()

print "Read Line: %s" % (line)

Close opend file

fo.close()

When we run above program, it produces following result −

Name of the file: foo.txt

Read Line: Python is a great language.

Read Line: Python is a great language.

P.Murali, Asst.Prof CSE Department Aditya Engineering College(A)

Python Programming

	Opening a file
	Example
	The close() method
	Read Lines of the file
	Example 1: Reading lines using readline() function
	Example 2: Reading Lines Using readlines() function

	Creating a new file
	Example 1

	File Pointer positions
	Writing the file:
	Example

	Syntax
	Parameters
	Example (1)

