
P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

UNIT-V

Errors and Exceptions

Errors are the problems in a program due to which the program will stop the execution. On the

other hand, exceptions are raised when some internal events occur which changes the normal flow

of the program.

Two types of Error occurs in python.

 Syntax errors

 Logical errors (Exceptions)

Topic1: Syntax Errors

Syntax errors:

Syntax errors are detected when we have not followed the rules of the particular

programming language while writing a program. These errors are also known as parsing

errors.

 Syntax errors are mistakes in the source code, such as spelling and punctuation

errors, incorrect labels, and so on, which cause an error message to be generated by the

compiler. These appear in a separate error window, with the error type and line number

indicated so that it can be corrected in the edit window.

Error caused by not following the proper structure (syntax) of the language is

called syntax error or parsing error.

amount = 10000

check that You are eligible to

purchase Dsa Self Paced or not

if(amount>2999)

print("You are eligible to purchase Dsa Self Paced")

Output:

Output:

logical errors(Exception):
 A logic error is an error in a program’s source code that gives way to unanticipated and

erroneous behavior.

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

 A logic error is classified as a type of runtime error that can result in a program

producing an incorrect output. It can also cause the program to crash when running.

 Logic errors are not always easy to recognize immediately.

When in the runtime an error that occurs after passing the syntax test is called exception or

logical type.

For example, when we divide any number by zero then the ZeroDivisionError exception is

raised, or when we import a module that does not exist then ImportError is raised.

Ex:

marks = 10000

 # perform division with 0

a = marks / 0

print(a)

Output:

Topic2:Exceptions

1. An exception can be defined as an unusual condition in a program resulting in the

interruption in the flow of the program.

2. Whenever an exception occurs, the program stops the execution, and thus the further

code is not executed.

3. Therefore, an exception is the run-time errors that are unable to handle to Python script.

An exception is a Python object that represents an error

Python has many built-in exceptions that enable our program to run without interruption and

give the output. These exceptions are given below:

ZeroDivisionError: Occurs when a number is divided by zero.

NameError: It occurs when a name is not found. It may be local or global.

IndentationError: If incorrect indentation is given.

IOError: It occurs when Input Output operation fails.

EOFError: It occurs when the end of the file is reached, and yet operations are being

performed.

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

Topic 3: Exception handling in python

 The cause of an exception is often external to the program itself. For example, an

incorrect input, a malfunctioning IO device etc.

 Because the program abruptly terminates on encountering an exception, it may cause

damage to system resources, such as files.

 Hence, the exceptions should be properly handled so that an abrupt termination of the

program is prevented.

 Python uses try and except keywords to handle exceptions. Both keywords are followed

by indented blocks.

The try-expect statement

If the Python program contains suspicious code that may throw the exception, we must

place that code in the try block.

The try block must be followed with the except statement, which contains a block of code

that will be executed if there is some exception in the try block.

Syntax:

try :

 #statements in try block

except :

 #executed when error in try block

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

For ex:

a=5

b=2

print(a/b)

print("Bye")

Output:

2.5

Bye

The above is normal execution with no error, but if we say when b=0, it is a

critical and gives error, see below

a=5

b=0

print(a/b)

print("bye") #this has to be printed, but abnormal termination

Output:

Traceback (most recent call last):

File"C:/Users/MRCET/AppData/Local/Programs/Python/Python3832/pyyy/ex2.py", line

3, in <module>

 print(a/b)

ZeroDivisionError: division by zero

 To overcome this we handle exceptions using except keyword

a=5

b=0

try:

 print(a/b)

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

except Exception:

 print("number can not be divided by zero")

 print("bye")

Output:

number can not be divided by zero

Bye

We can also use the else statement with the try-except statement in which, we can

place the code which will be executed in the scenario if no exception occurs in the try block.

try:

 #block of code

except Exception1:

 #block of code

else:

 #this code executes if no except block is executed

Ex:

try:

 a = int(input("Enter a:"))

 b = int(input("Enter b:"))

 c = a/b

 print("a/b = %d"%c)

Using Exception with except statement. If we print(Exception) it will return except

ion class

except Exception:

 print("can't divide by zero")

 print(Exception)

else:

 print("Hi I am else block")

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

Output:

Enter a:10

Enter b:0

can't divide by zero

 <class 'Exception'>

Topic 4: Raising Exceptions

 Each time an error is detected in a program, the Python interpreter raises (throws) an

exception.

 Exception handlers are designed to execute when a specific exception is raised.

Programmers can also forcefully raise exceptions in a program using the raise and assert

statements.

 Once an exception is raised, no further statement in the current block of code is

executed. So, raising an exception involves interrupting the normal flow execution of

program and jumping to that part of the program (exception handler code) which is

written to handle such exceptional situations.

Syntax:

raise exception-name[(optional argument)]

 To raise an exception, the raise statement is used. The exception class name follows it.

 An exception can be provided with a value that can be given in the parenthesis.

 To access the value "as" keyword is used. "e" is used as a reference variable which

stores the value of the exception.

 We can pass the value to an exception to specify the exception type.

Ex:

try:

 age = int(input("Enter the age:"))

 if(age<18):

 raise ValueError

 else:

 print("the age is valid")

except ValueError:

print("The age is not valid")

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

Output:

Enter the age:17

 The age is not valid

Topic 5: User-Defined Exceptions

The Python allows us to create our exceptions that can be raised from the program

and caught using the except clause.

However, we suggest you read this section after visiting the Python object and classes.

Ex:

class ErrorInCode(Exception):

 def __init__(self, data):

 self.data = data

 def __str__(self):

 return repr(self.data)

try:

 raise ErrorInCode(2000)

except ErrorInCode as ae:

 print("Received error:", ae.data)

Output:

Received error: 2000

User defined exceptions can be implemented by raising an exception explicitly, by using

assert statement or by defining custom classes for user defined exceptions.

Using Assert statements to implement user defined exceptions in python:

We can use assert statement to implement constraints on values of our variable in

python. When, the condition given in assert statement is not met, the program gives

AssertionError in output.

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

The syntax for assert statement in python is

assert condition

where condition can be any conditional statement which evaluates to True or False.

Ex:

 age= 10

print("Age is:")

print(age)

assert age>0

yearOfBirth= 2021-age

print("Year of Birth is:")

print(yearOfBirth)

Output:

Age is:

10

Year of Birth is:

2011

Topic 6: Defining Clean-up Actions, Redefined Cleanup Actions.

1. Clean up actions are those statements within a program that are always executed.

2. These statements are executed even if there is an error in the program.

3. If we have used exception handling in our program then also these statements get

executed.

4. In Python, we use finally keyword to state the part of the code that is going to execute

every time the program runs. That is every code line under finally is clean up action.

Ex:

def divide(x, y):

 try:

 # Floor Division : Gives only Fractional Part as Answer

 result = x // y

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

 except ZeroDivisionError:

 print("Sorry ! You are dividing by zero ")

 else:

 print("Yeah ! Your answer is:", result)

 finally:

 print("I'm finally clause, always raised !! ")

Look at parameters and note the working of Program

divide(3, 2)

Output:

Yeah ! Your answer is : 1

 I'm finally clause, always raised !!

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

Graphical User Interfaces

Most people do not judge a book by its cover. They are interested in its contents, not

its appearance. However, users judge a software product by its user interface because they

have no other way to access its functionality.

 graphical user interface or GUI (or its close relative, the touchscreen interface). A

GUI displays text as well as small images (called icons) that represent objects such as

folders, files of different types, command buttons, and drop-down menus. In addition to

entering text at the keyboard, the user of a GUI can select some of these icons with a

pointing device, such as a mouse, and move them around on the display.

Topic7: The Behavior of Terminal Based Programs and GUI - Based

Programs

The Behavior of Terminal-Based Programs:

The terminal-based version of the program prompts the user for his gross income and

number of dependents. After he enters his inputs, the program responds by computing and

displaying his income tax. The program then terminates execution. A sample session with

this program is shown in Figure

This terminal-based user interface has several obvious effects on its users:

• The user is constrained to reply to a definite sequence of prompts for inputs. Once an

input is entered, there is no way to back up and change it.

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

• To obtain results for a different set of input data, the user must run the program again.

At that point, all of the inputs must be re-entered.

Each of these effects poses a problem for users that can be solved by converting the

interface to a GUI.

GUI-Based Programs:

 The GUI-based version of the program displays a window that contains various

components, also called widgets.

 Some of these components look like text, while others provide visual cues as to their

use.

Below Figure shows snapshots of a sample session with this version of the program. The

snapshot on the left shows the interface at program start-up, whereas the snapshot on the

right shows the interface after the user has entered inputs and clicked the Compute button.

This program was run on a Macintosh; on a Windows- or Linuxbased PC, the windows look

slightly different.

The window in Figure 8-2 contains the following components:

• A title bar at the top of the window. This bar contains the title of the program, “Tax

Calculator.” It also contains three colored disks. Each disk is a command button.

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

• A set of labels along the left side of the window. These are text elements that describe the

inputs and outputs. For example, “Gross income” is one label.

• A set of entry fields along the right side of the window. These are boxes within which the

program can output text or receive it as input from the user. The first two entry fields will

be used for inputs, while the last field will be used for the output. At program start-up, the

fields contain default values, as shown in the window on the left side of Figure 8-2.

• A single command button labeled Compute. When the user uses the mouse to press this

button, the program responds by using the data in the two input fields to compute the

income tax. This result is then displayed in the output field. Sample input data and the

corresponding output are shown in the window on the right side of Figure 8-2.

• The user can also alter the size of the window by holding the mouse on its lower-right

corner and dragging in any direction.

Topic 8: Coding Simple GUI-Based Programs

In this section, we show some examples of simple GUI-based programs in Python.

Python’s standard tkinter module includes classes for windows and numerous types of

window components, but its use can be challenging for beginners.

open-source module called breezypythongui, while occasionally relying upon some

of the simpler resources of tkinter. You will find the code, documentation, and installation

instructions for the breezypythongui module at http://home.wlu.edu/~lambertk/bre

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

A Template for All GUI Programs:

from breezypythongui import EasyFrame

Other imports

class ApplicationName(EasyFrame):

 The __init__ method definition

 Definitions of event handling methods

def main():

 ApplicationName().mainloop()

if __name__ == "__main__":

 main()

The Syntax of Class and Method Definitions:

Note that the syntax of class and method definitions is a bit like the syntax of function

definitions. Each definition has a one-line header that begins with a keyword (class or def),

followed by a body of code indented one level in the text.

A class header contains the name of the class, conventionally capitalized in Python,

followed by a parenthesized list of one or more parent classes

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

A method header looks very much like a function header, but a method always has at

least one parameter, in the first position, named self.

def someMethod(self):

the method call

anObject.someMethod()

Topic 9: Other Useful GUI Resources

1:

2:

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

3:

4:

P.MURALI, ASST.PROF CSE Department Aditya Engineering College(A)

 Python Programming

5:Radio Buttons

Check buttons allow a user to select multiple options in any combination. When the user must

be restricted to one selection only, the set of options can be presented as a group of radio

buttons. Like a check button, a radio button consists of a label and a control widget. One of

the buttons is normally selected by default at program start-up. When the user selects a

different button in the same group, the previously selected button automatically deselects.

