ACADEMIC REGULATIONS & COURSE STRUCTURE

For

ADVANCED MANUFACTURING AND MECHANICAL SYSTEM DESIGN

(Applicable for batches admitted from 2016-2017)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
KAKINADA - 533 003, Andhra Pradesh, India
I Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Production Automation & CIM</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Interactive Computer Graphics & Design</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Optimization Techniques & Applications</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Advances in CNC Technologies</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Elective I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. Industrial Robotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2. Mechanics of Composites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3. Total Quality Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Elective II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. Advanced CAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2. Mechatronics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3. Quality Enng.in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Advanced CAD/CAM Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits

20

II Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modeling & Simulation of Manufacturing Systems</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Precision Engineering</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Intelligent Manufacturing Systems</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Production and Operations Management</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Elective III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. Finite Element Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2. Control Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3. Design and Manufacturing of MEMS and Microsystems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Elective IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1. Product Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2. Materials Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3. Flexible Manufacturing Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Manufacturing Simulation and Precision Enng. Lab</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits

20
III Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comprehensive Viva-Voce</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Seminar – I</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Project Work Part - I</td>
<td>--</td>
<td>--</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

IV Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seminar – II</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Project Work Part - II</td>
<td>--</td>
<td>--</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:
GT (Group Technology) and Cellular Manufacturing: Part families, part classification and coding, cellular manufacturing, applications of GT, Analysis in cellular Manufacturing.

UNIT-V:
FMS (Flexible Manufacturing Systems) Introduction, types, FMS components, workstations, material handling, FMS application and benefits, FMS planning and implementation.

TEXT BOOKS:
1. Automation, Production systems and computer integrated manufacturing/ Mikel P. Groover/ Pearson edu./2e.
2. Principles of computer integrated manufacturing/ S. Kant Vajpayee / Prentice – Hall.
UNIT – I
Introduction to computer graphics: Color CRT raster scan monitors, plasma display & liquid crystal display monitors, computer input devices, hard copy devices. Raster scan graphics: Line drawing algorithms – DDA & Bresenham algorithms, circle generation, general function rasterization, displaying lines, characters and polygons.

UNIT – II
Filling algorithms: polygon filling, edge fill algorithm, seed fill algorithm, fundamentals of antialiasing and half toning.

UNIT – III

UNIT – IV
Transformations: Cartesian and homogeneous coordinate systems two dimensional and three dimensional transformations – scaling, rotation, Shearing, Zooming, viewing transformation, reflection, rotation about an axis, concatenation, Rendering: Hidden line removal algorithms, surface removal algorithms, painters, Warnock, Z buffer algorithm.

UNIT – V
Shading algorithms: Constant intensity algorithm, Phong’s shading algorithm, gourand shading algorithm, Comparison of shading algorithms. Principle of developing animation, morphing etc. 3D industrial imaging and inspection systems, Human computer interaction tools and techniques, development of Virtual reality based environments, Development of industrial, medical and gaming applications.

Text Books:
UNIT I:
Single variable non linear unconstrained optimization:
One dimensional minimization methods:- Uni-modal function ,elimination methods, unrestricted
search, exhaustive search,, Fibonacci method, golden section method, interpolation method.

UNIT II:
Multi variable non-linear unconstrained optimization: Direct search method, search methods,
invariant method, pattern search method, Rossen - Brocks method of rotating decent methods,
gradient of function, steepest decent method, Fletcher Reeves method, variable metric method.

UNIT III:
Geometric programming: Posynomial – arithmetic - geometric inequality – unconstrained G.P-
constrained G.P . DYNAMIC PROGRAMMING: Multistage decision process, principles of
optimality, examples, conversion of final problem to an initial value problem, application of
dynamic programming , production inventory, allocation, scheduling replacement.

UNIT IV:
Linear programming – Formulation – Sensivity analysis. Change in the constraints, cost
coefficients, coefficients of the constraints, addition and deletion of variable, constraints.
Integer Programming- Introduction – formulation – Gomory cutting plane algorithm – Zero or
one algorithm, branch and bound method

UNIT V:
Stochastic programming:
Basic concepts of probability theory, random variables- distributions-mean, variance,correlation,
covariance, joint probability distribution- stochastic linear, dynamic programming.

Text Books:
2. Introductory to operation Reasearch / Kasan & Kumar / Springar
3. Optimization Techniques theory and practice / M.C.Joshi, K.M.Moudgalya/ Narosa
 Publications

Reference Books :
1. S.D.Sharma / Operations Research
2. Operation Reasearch / H.A.Taha /TMH
3. Optimization in operations research / R.LRardin /
4. Optimization Techniques /Chandraputla /
UNIT I:
Features of NC Machines Fundamentals of numerical control, advantage of NC systems, classification of NC systems, point to point, NC and CNC, incremental and absolute, open and closed loop systems. Features of NC Machine Tools, design consideration of NC machine tool, methods of improving machine accuracy. Systems Drives and Devices: Hydraulic motors, DC motors, stepping motors and AC motors, feedback devices, encoders, Induction tachometers.

UNIT II:
NC Part Programming: Manual programming-Basic concepts, Point to Point contour programming, canned cycles, parametric programming. Computer-Aided Programming: General information, APT programming, Examples APT programming problems (2D machining only). NC programming on CAD/CAM systems.

UNIT III:

UNIT IV:
Tooling for CNC machines: Interchangeable tooling system, preset and qualified tools, coolant fed tooling system, modular fixturing, quick change tooling system, automatic head changers. DNC SYSTEMS AND Adaptive Control: Introduction, type of DNC systems, advantages and disadvantages of DNC, adaptive control with optimization, Adaptive control with constraints, Adaptive control of machining processes like turning, grinding

UNIT V:

Text Books:
UNIT - I
CONTROL SYSTEM AND COMPONENTS: basic concepts and motion controllers, control system analysis, robot actuation and feedback components, Positions sensors, velocity sensors, actuators, power transmission systems, robot joint control design.

UNIT - II
MOTION ANALYSIS AND CONTROL: Manipulator kinematics, position representation, forward and inverse transformations, homogeneous transformations, manipulator path control, robot arm dynamics, configuration of a robot controller.

UNIT - III
END EFFECTORS: Grippers-types, operation, mechanism, force analysis, tools as end effectors consideration in gripper selection and design. SENSORS: Desirable features, tactile, proximity and range sensors, uses sensors in robotics.
MACHINE VISION: Functions, Sensing and Digitizing-imaging devices, Lighting techniques, Analog to digital single conversion, image storage: Image processing and Analysis-image data reduction, Segmentation, feature extraction, Object recognition. Training the vision system, Robotic application.

UNIT - IV
ROBOT PROGRAMMING: Lead through programming, Robot program as a path in space, Motion interpolation, WAIT, SIGNAL AND DELAY commands, Branching, capabilities and Limitations of lead through methods.
ROBOT LANGUAGES: Textual robot Languages, Generations of robot programming languages, Robot language structures, Elements and function.

UNIT - V
ROBOT CELL DESGIN AND CONTROL: Robot cell layouts-Robot centered cell, In-line robot cell, Considerations in work design, Work and control, Inter locks, Error detection, Work cell controller.
ROBOT APPLICATION: Material transfer, Machine loading/unloading, Processing operation, Assembly and Inspection, Future Application.

TEXT BOOKS:
1. Industrial Robotics / Groover M P /Pearson Edu.

REFERENCES:
1 Robotics / Fu K S/ McGraw Hill.
2 Robotic Engineering / Richard D. Klafter, Prentice Hall
3 Robot Analysis and Intelligence / Asada and Slotine / Wiley Inter-Science.
4 Robot Dynamics & Control – Mark W. Spong and M. Vidyasagar / John Wiley
6 Robotics and Control / Mittal R K & Nagrath I J / TMH
UNIT-I
Introduction to Composites: Introduction, Classification, matrix materials, reinforced matrix of composites

UNIT-II

UNIT-III

UNIT-IV

UNIT-V

TEXT BOOKS:

REFERENCES:
TOTAL QUALITY MANAGEMENT
(ELECTIVE I)

UNIT – I:
INTRODUCTION: The concept of TQM, Quality and Business performance, attitude and involvement of top management, communication, culture and management systems. Management of Process Quality: Definition of quality, Quality Control, a brief history, Product Inspection vs, Process Control, Statistical Quality Control, Control Charts and Acceptance Sampling.

UNIT – II:
CUSTOMER FOCUS AND SATISFACTION: The importance of customer satisfaction and loyalty- Creating satisfied customers, Understanding the customer needs, Process Vs. Customer, internal customer conflict, quality focus, Customer Satisfaction, role of Marketing and Sales, Buyer – Supplier relationships. Bench Marketing: Evolution of Bench Marketing, meaning of Bench marketing, benefits of bench marketing, the bench marketing process, pitfalls of bench marketing.

UNIT – III:
ORGANIZING FOR TQM: The systems approach, Organizing for quality implementation, making the transition from a traditional to a TQM organizing, Quality Circles. Productivity, Quality and Reengineering: The leverage of Productivity and Quality, Management systems Vs. Technology, Measuring Productivity, Improving Productivity Re-engineering.

UNIT – IV:

UNIT – V:
ISO9000: Universal Standards of Quality: ISO around the world, The ISO9000 ANSI/ASQCQ-90. Series Standards, benefits of ISO9000 certification, the third party audit, Documentation ISO9000 and services, the cost of certification implementing the system.

TEXT BOOKS:
1. Total Quality Management / Joel E.Ross/Taylor and Francisc Limited
2. Total Quality Management/P.N.Mukherjee/PHI

REFERENCES:
1. Beyond TQM / Robert L.Flood
2. Statistical Quality Control / E.L. Grant
5. Total Engineering Quality Management/Sunil Sharma/Macmillan
UNIT- I:
PRINCIPLES OF COMPUTER GRAPHICS: Introduction, graphic primitives, point plotting, lines, Bresenham’s circle algorithm, ellipse, transformation in graphics, coordinate systems, view port, 2D and 3D transformation, hidden surface removal, reflection, shading and generation of characters.

UNIT- II:
CAD TOOLS: Definition of CAD Tools, Types of system, CAD/CAM system evaluation criteria, brief treatment of input and output devices. Graphics standard, functional areas of CAD, Modeling and viewing, software documentation, efficient use of CAD software.
GEOMETRIC MODELLING: Types of mathematical representation of curves, wire frame models, wire frame entities parametric representation of synthetic curves, hermite cubic splines, Bezir curves, B-splines, rational curves.

UNIT- III:
SURFACE MODELING: Mathematical representation surfaces, Surface model, Surface entities surface representation, Parametric representation of surfaces, plane surface, rule surface, surface of revolution, Tabulated Cylinder.

UNIT- IV:
PARAMETRIC REPRESENTATION OF SYNTHETIC SURFACES: Hermite Bicubic surface, Bezir surface, B-Spline surface, COONs surface, Blending surface, Sculptured surface, Surface manipulation — Displaying, Segmentation, Trimming, Intersection, Transformations (both 2D and 3D).

UNIT- V:
GEOMETRIC MODELLING-3D: Solid modeling, Solid Representation, Boundary Representation (B-rep), Constructive Solid Geometry (CSG).

TEXT BOOKS:
2. CAD/CAM Principles and Applications/ P.N.Rao/TMH/3rd Edition

REFERENCES:
1. CAD/CAM /Groover M.P./ Pearson education
2. CAD/CAM Concepts and Applications/ Alavala/ PHI
3. CAD / CAM / CIM, Radhakrishnan and Subramanian/ New Age
4. Principles of Computer Aided Design and Manufacturing/ Farid Amirouche/ Pearson
MECHATRONICS
(ELECTIVE – II)

UNIT-I
Mechatronics systems, elements, levels of mechatronics system, Mechatronics design process, system, measurement systems, control systems, microprocessor-based controllers, advantages and disadvantages of mechatronics systems. Sensors and transducers, types, displacement, position, proximity, velocity, motion, force, acceleration, torque, fluid pressure, liquid flow, liquid level, temperature and light sensors.

UNIT-II
Solid state electronic devices, PN junction diode, BJT, FET, DIA and TRIAC. Analog signal conditioning, amplifiers, filtering. Introduction to MEMS & typical applications.

UNIT-III

UNIT-IV
Digital electronics and systems, digital logic control, micro processors and micro controllers, programming, process controllers, programmable logic controllers, PLCs versus computers, application of PLCs for control.

UNIT-V
System and interfacing and data acquisition, DAQS, SCADA, A to D and D to A conversions; Dynamic models and analogies, System response. Design of mechatronics systems & future trends.

TEXT BOOKS:

REFERENCES:
4. Mechatronics/M.D.Singh/J.G.Joshi/PHI.
QUALITY ENGINEERING IN MANUFACTURING
(ELECTIVE – II)

UNIT-I
Quality value and Engineering: An overall quality system, quality engineering in production design, quality engineering in design production processes. Loss function and quality level: Derivation and use of quartile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances (N-type-, S-type and L-type)

UNIT-II
Tolerance Design and Tolerancing: Functional limits, tolerance design for N-type, L-type and characteristics, tolerance allocation for multiple components. Parameter and tolerance design: Introduction to parameter design, signal to noise ratios, parameter design strategy, Introduction to tolerance design, tolerance design using the loss function, identification of tolerance design factors.

UNIT-III

UNIT-IV
Orthogonal Arrays: Typical test strategies, better test strategies, efficient test strategies, conducting and analyzing an experiment. Interpolation of experimental results: Interpretation methods, percent contribution, estimating the mean.

UNIT-V
ISO-9000 Quality system, BDRE,6-sigma, bench marking, quality circles-brain storming-fishbone diagram-problem analysis.

TEXT BOOKS:

REFERENCES:
Part A

Students shall carry out the modeling and FE analysis of the following

1. Trusses – 2D and 3D
2. Beams
3. Plate with Plane stress condition
4. Plate with Plane strain condition
5. Cylinders – Axially-symmetric condition
6. Dynamic analysis of structures with and without damping

Part B

1. Features and selection of CNC turning and milling centers.
2. Practice in part programming and operation of CNC turning machines, subroutine techniques and use of cycles.
3. Practice in part programming and operating a machining center, tool panning and selection of sequences of operations, tool setting on machine, practice in APT based NC programming.
Unit-I

Introduction to System and simulation: Concept of system and elements of system, Discrete and continuous system, Models of system and Principles of modeling and simulation, Monte carlo simulation, Types of simulation, Steps in simulation model, Advantages, limitations and applications of simulation, Applications of simulation in manufacturing system

Unit-II

Review of statistics and probability: Types of discrete and continuous probability distributions such as Geometric, Poisson, Uniform, Geometric distribution with examples, Normal, Exponential distribution with examples.

Unit-III

Random numbers: Need for RNs, Technique for Random number generation such as Mid product method, Mid square method, and Linear congruential method with examples

Test for Random numbers: Uniformity - Chi square test or Kolmogorov Smirnov test, Independency- Auto correlation test

Random Variate generation: Technique for Random variate generation such as Inverse transforms technique or Rejection method

Unit-IV

Analysis of simulation data: Input data analysis, Verification and validation of simulation models, Output data analysis

Simulation languages: History of simulation languages, Comparison and selection of simulation languages

Design and evaluation of simulation experiments: Development and analysis of simulation models using simulation language with different manufacturing systems

Unit-V

Queueing models: An introduction, M/M/1 and M/M/m Models with examples, Open Queueing and Closed queueing network with examples

Markov chain models and others: Discrete time markov chain with examples, Continues time markov chain with examples, stochastic process in manufacturing, Game theory

Text Books:
UNIT I:

UNIT II:
GEOMETRIC DEIMENSIONING AND TOLERANCING: Tolerance Zone Conversions – Surfaces, Features, Features of Size, Datum Features – Datum Oddly Configured and Curved Surfaces as Datum Features, Equalizing Datums – Datum Feature of Representation – Form controls, Orientation Controls – Logical Approach to Tolerancing.

UNIT III:
DATUM SYSTEMS: Design of freedom, Grouped Datum Systems – different types, two and three mutually perpendicular grouped datum planes; Grouped datum system with spigot and recess, pin and hole; Grouped Datum system with spigot and recess pair and tongue – slot pair – Computation of Transnational and rotational accuracy, Geometric analysis and application.

UNIT IV:

UNIT V:
TOLERANCE CHARTING TECHNIQUES: Operation Sequence for typical shaft type of components, Preparation of Process drawings for different operations, Tolerance worksheets and centrally analysis, Examples, Design features to facilitate machining; Datum Features – functional and manufacturing Components design – Machining Considerations, Redesign for manufactured, Examples.

TEXT BOOKS:

REFERENCES:
1 Engineering Design – A systematic Approach / Matousek / Blackie & Son Ltd., London
2 Precision Engineering/VC Venkatesh & S Izman/TMH
UNIT I:

UNIT II:
COMPONENTS OF KNOWLEDGE BASED SYSTEMS - Basic Components of Knowledge Based Systems, Knowledge Representation, Comparison of Knowledge Representation Schemes, Interference Engine, Knowledge Acquisition.

UNIT III:
MACHINE LEARNING - Concept of Artificial Intelligence, Conceptual Learning, Artificial Neural Networks - Biological Neuron, Artificial Neuron, Types of Neural Networks, Applications in Manufacturing.

UNIT IV:

UNIT V:

TEXT BOOKS:
1. Intelligent Manufacturing Systems/ Andrew Kusiak/Prentice Hall.
2. Artificial Neural Networks/ Yagna Narayana/PHI/2006
UNIT -I

UNIT – II

UNIT - III

UNIT - IV

UNIT – V
SUPPLY CHAIN MANAGEMENT: Concepts, process of SCM, selection of channel strategy, core operations capabilities, SCM decisions, SCM models.

TEXT BOOKS:

REFERENCES:
5 Production and Operation Management / Panner Selvam / PHI.
6 Production and Operation Analysis/ Nahima/ Mc Graw Hill/2004
UNIT - I
FORMULATION TECHNIQUES: Methodology, Engineering problems and governing differential equations, finite elements., Variational methods-potential energy method, Raleigh Ritz method, strong and weak forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundary conditions.

UNIT – II
ONE-DIMENSIONAL ELEMENTS: Bar, trusses, beams and frames, displacements, stresses and temperature effects.

UNIT – III

UNIT – IV
ISOPARAMETRIC FORMULATION: Concepts, sub parametric, super parametric elements, numerical integration, Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal’s triangle, Patch test.

UNIT – V
FINITE ELEMENTS IN STRUCTURAL ANALYSIS: Static and dynamic analysis, eigen value problems, and their solution methods, case studies using commercial finite element packages.

TEXT BOOK:

REFERENCES:
UNIT – I INTRODUCTION

Concepts of Control Systems- Open Loop and closed loop control systems and their differences- Different examples of control systems- Classification of control systems, Feed-Back Characteristics, Effects of feedback.

Mathematical models – Differential equations, Impulse Response and transfer functions - Translational and Rotational mechanical systems

UNIT II TRANSFER FUNCTION REPRESENTATION

Transfer Function of DC Servo motor - AC Servo motor- Synchro transmitter and Receiver, Block diagram representation of systems considering electrical systems as examples -Block diagram algebra – Representation by Signal flow graph - Reduction using Mason’s gain formula.

UNIT-III TIME RESPONSE ANALYSIS

UNIT – IV STABILITY ANALYSIS IN S-DOMAIN

The concept of stability – Routh’s stability criterion – qualitative stability and conditional stability – limitations of Routh’s stability

Root Locus Technique:

The root locus concept - construction of root loci-effects of adding poles and zeros to G(s)H(s) on the root loci.

UNIT – V FREQUENCY RESPONSE ANALYSIS

Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Phase margin and Gain margin-Stability Analysis from Bode Plots- Polar Plots-Nyquist Plots-Stability Analysis.

TEXT BOOKS:

REFERENCE BOOKS:

3. Modern Control Engineering, Fifth edition, Kotsuhiko Ogata, Prentice Hall of India
UNIT I:
OVERVIEW AND WORKING PRINCIPLES OF MEMS AND MICROSYSTEMS

UNIT II:
ENGINEERING SCIENCE FOR MICROSYSTEMS DESIGN AND FABRICATION:
Atomic structure of Matter, Ions and Ionization, Molecular Theory of Mater and Intermolecular Force, Doping of Semiconductors, The diffusion Process, Plasma Physics, Electrochemistry, Quantum Physics

UNIT III:
ENGINEERING MECHANICS FOR MICROSYSTEMS DESIGN:
Static Bending of thin Plates, Mechanical Vibration, Thermo mechanics Fracture Mechanics, Thin-Film Mechanics, Overview of Finite Element Stress Analysis

UNIT IV:
THERMO FLUID ENGINEERING & MICROSYSTEMS DESIGN:

UNIT V:
MATERIALS FOR MEMS & MICROSYSTEMS AND THEIR FABRICATION:
Substrates and Wafers, Active substrate materials, Silicon as a substrate material, Silicon Compounds, Silicon Piezoresistors, Gallium Arsenide, Quartz, Piezoelectric Crystals and Polymers, Photolithography, Ion implantation, Diffusion and oxidation, chemical and physical vapor deposition, Etching, Bulk micro manufacturing, Surface Micromachining, The LIGA Process

TEXT BOOKS:

REFERENCES:
PRODUCT DESIGN
(ELECTIVE IV)

UNIT- I

UNIT - II

UNIT - III

UNIT - IV

UNIT - V

TEXT BOOKS:

REFERENCES:
3. Production and Operations Management/Chase/TMH
MATERIALS TECHNOLOGY
(ELECTIVE IV)

UNIT I:
Elasticity in metals, mechanism of plastic deformation, slip and twinning, role of dislocations, yield stress, shear strength of perfect and real crystals, strengthening mechanism, work hardening, solid solution, grain boundary strengthening. Poly phase mixture, precipitation, particle, fiber and dispersion strengthening, effect of temperature, strain and strain rate on plastic behavior, super plasticity, Yield criteria: Von-mises and Tresca criteria.

UNIT II:
Griffith’s Theory, stress intensity factor and fracture Toughness, Toughening Mechanisms, Ductile and Brittle transition in steel, High Temperature Fracture, Creep, Larson – Miller parameter, Deformation and Fracture mechanism maps.

UNIT III:
Fatigue, fatigue limit, features of fatigue fracture, Low and High cycle fatigue test, Crack Initiation and Propagation mechanism and paris Law, Effect of surface and metallurgical parameters on Fatigue, Fracture of non-metallic materials, fatigue analysis, Sources of failure, procedure of failure analysis. Motivation for selection, cost basis and service requirements, Selection for Mechanical Properties, Strength, Toughness, Fatigue and Creep.

UNIT IV:
MODERN METALLIC MATERIALS: Dual Steels, Micro alloyed, High Strength Low alloy (HSLA) Steel, Transformation induced plasticity (TRIP) Steel, Maraging Steel, Inter metallics, Ni and Ti Aluminides. Processing and applications of Smart Materials, Shape Memory alloys, Metallic Glass Quasi Crystal and Nano Crystalline Materials.

UNIT V:

TEXT BOOKS:

REFERENCES:
2. Engineering Materials Technology/James A Jacob Thomas F Kilduff/Pearson
3. Material Science and Engineering/William D Callister/John Wiley and Sons
4. Plasticity and plastic deformation by Aritzur.
5. Introduction to Ceramics, 2nd Edition by W. David Kingery, H. K. Bowen, Donald R. Uhlmann
UNIT I
Introduction: FMS definition and classification of manufacturing systems, Automated production cycle, Need of flexibility, Concept of flexibility, Types of flexibilities and its measurement. FMS Equipment: Why FMS, Factors responsible for the growth of FMS, FMS types, Economic justification for FMS, Functional requirements for FMS equipments, FMS processing and QA equipment, e.g., turning and machining centers, Co-ordinate measuring machines, Cleaning and debarring machines, FMS system support equipment, Automated material handling and storage equipment, cutting tool and tool management, Work holding considerations, Fixture considerations in FMS environment. FMS workstations, Computer control system, Planning for FMS, Applications and benefits.

UNIT-II
Group Technology: Group Technology and Flexible Manufacturing System; Group Technology part families, Parts classification and coding, Production flow analysis, Machine Cell Design, Benefits of Group Technology, GT concepts, Advantages of GT, Part family formation-coding and classification systems; Part machine group analysis, Methods for cell formation, Use of different algorithms, mathematical programming and graph theoretic model approach for part grouping, Cellular vs FMS production.

UNIT-III
CNC Programming: Co-ordinate System, Fundamentals of APT programming, Manual part programming-structure of part programmed, G & M Codes, developing simple part programmes, Parametric programming, CAM packages for CNC machines-IDEAS, Unigraphics, Pro Engineer, CATIA, ESPRIT, Master CAM etc., and use of standard controllers FANUC, Heidenhain and Sinumeric control system.

UNIT-IV
Tooling for CNC Machines: Cutting tool materials, Carbide inserts classification; Qualified, semiqualified and preset tooling, Cooling fed tooling system, Quick change tooling system, Tooling system for machining centre and turning center, tool holders, Tool assemblies, Tool magazines, ATC mechanisms, Tool management. Robotics and Material Handling Systems: Introduction to robotic technology, and applications, Robot anatomy, material handling function, Types of material handling equipment, Conveyer systems, Automated guided vehicle systems, Automated storage/retrieval systems, Work-in-process storage, Interfacing handling and storage with manufacturing.

UNIT-V
Computer Integrated Manufacturing: Introduction, Evaluation of CIM, CIM hardware and software, Requirements of computer to be used in CIM system, Database requirements, Concurrent engineering-Principles, design and development environment, advance modeling techniques.

Fabrication Of Microelectronic Devices: Crystal Growth And Wafer Preparation, Film Deposition Oxidation, Lithography, Bonding And Packaging, Reliability And Yield, Printed Circuit Boards, Computer Aided Design In Micro Electronics, Surface Mount Technology, Integrated Circuit Economics.
TEXT BOOKS:
1. Flexible Manufacturing System Wernecks Spring-Verlag
2. FMS in Practice Bonetto Northox Ford
3. Flexible Manufacturing Cells and systems W.W. Luggen Prentice Hall India
4. Computer Integrated Manufacturing Paul Ranky Prentice Hall of India
A. MANUFACTURING SIMULATION

The students will be given training on the use and application of the following software to manufacturing problems:
1. Auto MOD Software.
2. PROMOD
3. SLAM–II
4. CAFIMS
5. Flexsim

They also learn how to write sub routines in C-language and interlinking with the above packages.

Problems for modelling and simulation experiments:
1. AGV planning
2. ASRS simulation and performance evaluation
3. Machines, AGVs and AS/RS integrated problems
4. JIT system
5. Kanban flow
6. Material handling systems
7. M.R.P. Problems
8. Shop floor scheduling etc.

B. PRECISION ENGINEERING

1. Hydraulic and Pneumatic circuits
2. Closed loop control systems
3. Study of the chip formation in turning process
4. Study of operation of tool and cutter grinder, twist drill grinder, Centreless grinder
5. Determination of cutting forces in turning
6. Experiments in unconventional manufacturing processes-AJM and study of USM, EDM, Laser Machining and Plasma spraying
7. Inspection of parts using tool makers microscope, roughness and form tester
8. Study of micro-controllers, programming on various CNC machine tools and also controllers
9. Studies on PLC programming
10. Study and programming of robots